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ABSTRACT

Biomedical imaging is the technique and process that involves a very broad field.
It covers data acquiring, image processing, structure visualizing to medical di-
agnosis based on features extracted from images. Medical image segmentation
is one of the most challenging tasks in medical image analysis and widely devel-
oped for many clinical applications. While deep learning-based approaches have
achieved impressive performance in semantic segmentation, they are limited to
pixel-wise settings with less annotation, imperfect data, imbalanced-class

data problems and weak boundary object segmentation in medical images.

This project tackles the aforementioned limitations by proposing a 3D deep
neural network, which inherits the merits from Active Contour model and is
guided by a Cycle-Consistent Adversarial Networks (CycleGAN). CycleGAN
aims at transferring data from source domain to target domain to
address the problem of less annotations. In addition to CycleGAN, which
helps to transfer the image appearance between the two time-points, we employ
the segmentation features to enforce the generator network to guarantee the
tissue segmentation consistency, results in more realistic synthetic images. In
order effectively process MRI images, which is shown as volumetric data, we
improve 2D CycleGAN to 3D CycleGAN. Furthermore we address the problem of
imbalanced-data and weak boundary object by proposing a two-branch UNet-
like architecture i.e. Active Contour Unet. Our proposed Active Contour
Unet network takes both higher level feature and intermediate level and lower
level feature into account. Our network contains two branches: (i) the first branch
extracts higher level feature as region information by a common encoder-decoder
network structure such as Unet, FCN; (ii) the second branch focuses on both
intermediate level feature as support information around boundary and lower

level feature on the boundary/surface. All two branches processes in parallel into



an end-to-end framework. In the second branches named Narrow Band Active
Contour (NB-AC) attention model, the object contour/surface plays the
role of a hyperplane and all data inside a narrow band as support information
that influences the position and orientation of the hyperplane. The proposed
network loss contains two fitting terms: (i) high level features (i.e. region)
fitting term from the first branch; (ii) lower level features (i.e. contour) fitting
term from the second branch including the (ii1) length of object contour and
(ii2) regional energy functional formed by the homogeneity criterion of both
inner band and outer band neighboring the evolving curve or surface. In order
to develop the proposed network regardless medical image modalities of 2D or 3D
volumetric, we have improved CycleGAN which was original developed on 2D to
3D volumetric and our two-branch UNet-like architecture has been implemented

under 3D network.

The proposed network has been evaluated on different challenging medical im-
age datasets including iSeg19, MR BrainS18 and Brats18. The experimental
results have shown that the proposed Active Contour Unet with our NB-AC loss
outperforms other mainstream loss functions such as Cross Entropy,
Dice, Focal on the common segmentation frameworks such as FCN and Unet.
Our 3D network which is built upon the proposed NB-AC loss and 3D-Unet
framework with the guidance from CycleGAN archives the state-of-the-art re-

sults on multiple volumetric datasets.
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CHAPTER 1
INTRODUCTION

The development of biomedical imaging techniques, which provides detailed
cross-sectional anatomies, leads the way for advanced deep learning approaches
beneficial to medical analysis or early diagnosis [1, 2]. For instance, segmentation
— the most prerequisite task in medical image processing, as it extracts the region
of interest (ROI) and defines the specific boundaries between divided areas of
the image. Several clustering or segmenting strategies based only on the global
characteristic of the image can also acquire requested results, though proved not
very efficient for involved multi- modality inputs [3], specifically Magnetic Res-
onance Images (MRI). MRI modality can provide complementary information
depending on variable acquisition parameters, such as T1, T1lc, T2, Flair and
it has been widely used in biomedical imaging. Recently, deep learning-based
approaches have obtained the state-of-the-art performance in multiple task in-
cluding image segmentation in both computer vision and medical imaging. There
are two main categories Based on the dimensions of convolutional kernel and in-
put size, approaches for volumetric segmentation can be categorized into two: (i)
2D approaches and (ii) 3D approaches. The former approaches take 2D image
slice as input, and the feature map of a full volume is formed by feature map
of individual slice. In these approaches, the 2D convolutional kernels are able to
leverage context across the height and width of the slice to make predictions;
however, they inherently fail to leverage context from adjacent slices. The 2D
approaches can efficiently reduce the computational cost for training but the
performance is limited compared to the 3D approaches. The 3D approaches take
the 3D image as input and apply the 3D convolution kernel to exploit the spatial
contextual information of the image. Since these approaches can utilize the in-
formation from adjacent slices for extracting prediction map, they have archived

the state-of-the-art results in volumetric segmentation Densenet [4, 5, 6], Unet



(7, 8], Vnet [9], DeepMedic [10]. Besides, so as to leverage the available data, it
is crucial to preprocess medical images: normalize, de-noising, contrast enhance-
ment, cranium removal or bias field correction and augmentation; These can be
operated in diverse ways: traditional method (flipping, centering, etc.) or the

trending tactics relating to generative adversarial neural networks (GAN).

Most deep learning (DL)-based segmentation networks have made use of com-
mon loss functions e.g., Cross-Entropy(CE), Dice [11], and the recent Focal [12].
These losses are based on summations over the segmentation regions and are
restricted to pixel-wise settings. Not only pixel-wise sensitivity, these losses are
unfavorable to small structures, do not take geometrical information into ac-
count as well as limited to imbalanced-class data and weak boundary objects
problems. Furthermore, these losses are working on higher level features of region
information and none of them intentionally are designed on lower level features
such as edge/boundary which plays an important role in medical imaging. We
have some observations on medical images as follows: (i) Boundary informa-
tion plays a significant role in many medical analysis tasks such as shape-based
cancer analysis, size-based volume measure. (ii) Medical images contain weak
boundaries which make segmentation tasks much more challenging due to low
intensity contrast between tissues, and intensity inhomogeneity. For example,
the myelination and maturation process of the infant brain, the intensity distri-
butions of gray matter(GM) and white matter (WM) have a larger overlapping
thus the boundary between GM and WM is very weak, leading to difficulty
for segmentation. (iii) In the medical image segmentation problem, imbalance-
class data is naturally existing. Those two challenges of the imbalanced-class
data and the weak boundary object in medical imaging are visualized in Fig. 5.2
and demonstrated in Fig.5.1. Fig.5.1(a) illustrates the imbalanced-class prob-
lem in medical images through the statistical class distribution of four different

datasets. For each dataset, the number of samples between classes are varied.



Fig.5.1(b) shows statistical values of Mean/Std/Median of pixel intensity in in-
dividual class when pixel values are in [0,1]. Within an individual dataset, the
difference between classes in term of Mean/Std/Median is very small. Strong
correlation between classes makes the problem of distinguishing classes more
challenging specially at the boundary as shown in Fig.5.2 which is known as

weak boundary problem.

To address the aforementioned problems of weak boundary, imbalance
data, we make use of the advantages of LS [13] and propose a two-
branch deep network which explicitly takes into account both higher level
features, i.e object region in the first branch and lower level features, i.e. contour
(object shape) and narrow band around the contour in the second branch. The
first branch is designed as a classical CNN, i.e. an encoder-decoder network
structure whereas the second branch is built as a narrow band active contour
(NB-AC) attention model which processes in parallel to the first branch. The
proposed loss for our NB-AC attention model contains two fitting terms: (i)
the length of the contour; (ii) the narrow band energy formed by homogeneity
criterion in both inner band and outer band neighboring the evolving curve or
surface as illustrated in Fig. 5.6. The higher level feature from the first branch is
connected to the lower level feature in the second branch through our proposed
transitional gates and both are designed in an end-to-end architecture. Thus,
our loss function not only pays attention to region information but also focus on
support information at the two sides of the boundary under a narrow band. In
this proposed network, we consider the object contour as a hyperplane whereas
information in the inner and outer bands aims play the role of a supporter which

influences the position and direction of the hyperplane.

Furthermore, generative adversarial neural networks (GAN) has been utilized
in multiple purposes of biomedical images processing such as reconstruction,

image synthesis, or anomaly detection. Among which, medical image synthe-



sis, adopting various favorable models like GANs [14], Conditional GAN [15]
or cycle-GAN [16, 17, 18], recycle GAN [19] for domain translation, plays both
an impressive role in augmentation solving the adversity of lacking detail an-
notated data or bias datasets (e.g. scarce amount of data for a rare disease)
and a promising shift for patient’s privacy issues. Alongside with the race of
modernistic neural network models, various other researches tackle the problem
of bettering image processing via the amendment of loss functions for diverse
purposes, distinguished as boundary-based, region-based, distribution-based or
compound loss. These recent researches have significantly contributed to the
CNN-based methods for multi-modalities medical images segmentation. For in-
stance, varied attractive approaches have been proposed following this novel
trend attempting to use GAN to translate inputted images from one domain
to another to guide the segmentation results, with interesting uses of the loss
functions. This bridges an ambition to study the effectiveness of the idea us-
ing domain transferring for guided segmentation. Inspired by the blossoming of
GAN, we tackle the problem of less labeled data in medical imaging
by first improving 2D cycle-GAN [16, 17] to 3D cycle-GAN and then
integrating the proposed 3D cycle-GAN into our proposed NB-AC

Unet under end-to-end transfer learning framework.

In the following chapters, we will discuss roughly about the background and
related work of this problem, our methods as well as experiments either directly
or indirectly relating to this problem. In chapter 2, we will note some basic
methods for deep learning and deep learning in medical problems. In chapter
3, we will note some previous techniques (to our furthest knowledge) solving
relating problems. Chapter 4 and chapter 5 will be about several approaches we
tackled the problem as well as the experiment results for a better understanding
of relating works. Future works and other possible approaches are provided in

chapter 6. The contributions in this work are:



Study the properties of medical imaging analysis and the challenges in

medical images segmentation.

Study two main areas in deep neural networks, namely, Convolutional Neu-

ral Networks (CNN) and Generative Adversarial Networks (GAN).

Study the active contour theory, specially we focus on zero level set ap-
proach, which is based on Mumford -Shah energy minimization and the

most successful active contour model for medical image segmentation.

Utilize the active contour theory, i.e. variational level set framework to

address the weak boundary problem in medical images segmentation.

Utilize the narrow band theory to address the imbalance data problem in

medical images segmentation.

Utilize CycleGAN to address the less labeled data problem in medical im-

ages segmentation.

We have implemented and reproduced the performance of the state-of-the-
art work proposed by [6] which utilized CycleGAN to improve segmentation

performance on iSeg19.

Extend the 2D CycleGAN [18], which was designed for 2D data, to 3D
CycleGAN to effectively work on volumetric data.

Our proposed network is able to tackle multiple limitations in medical
images segmentation, namely, less annotation, imperfect data, imbalance

class problems and weak boundary object segmentation.

The entire proposed network is implemented under 3D network architecture

and end-to-end framework.



CHAPTER 2
BACKGROUND

This chapter includes three main section discussing medical image and its chal-
lenges (section 2.1.2), contour-based approaches (section 2.2) and popular deep
learning-based methods (section 2.3.2). In the later parts, we provide an overview
of different types of medical images (especially magnetic resonant image for

brains), an overview of medical imaging methods with their limitations.

2.1 Medical images and its challenges

There are several common problems in image processing which can be applied for
detecting and analysing brain tissues, such as classification, detection and seg-
mentation, etc. No matter what, the most basic step is to understand thoroughly
the common input data for brain medical imaging problems: MRI sequences, es-
pecially our target problem - brain images. Only after that, image processing

can be applied to solve the problems.

2.1.1 Understanding MRI sequences

The MRI sequences is the sequences of event happened inside the MRI machines,
which give us the MRI images by adding photons energy to the tissues and
observing the rate of bounced back energy '. There are several common MRI
sequences, such as T1, T2, FLAIR (fluid attenuation inversion recovery), GRE,
DWI, and so on. Each type of the MRI sequences comes with different attributes
and preferred usage. Here, we will only discuss brain MRI images as it directly

related to our considered problem.

T1 and T2 brain sequences are similar: water and fat have opposite intensity

!The contrast of MRI images shows the differences in relaxation of photons in different
brain tissues.



within a sequence and substances in T1 and T2 also have opposite intensity.
Table 2.1 shows the intensities of common tissues in T1, T2 and Flair in brain

MRI and example in figure 2.1 illustrates the differences?.

In T2 MRI, lesions (inflammation in table 2.1) are hard to be distinguish from
CSF as they are both bright regions, but can easily be done with Flair (Flair is
the same as T2 except for CSF regions are flipped back to dark). This can be

illustrates with figure 2.2 3.

For other types of MRI sequences, GRE (gradient echo or also known as T2*), in
brief, shows paramagnetic substances in dark intensity, and it is one of the few
brain MRI sequences can help to detect hemorrhages. DWI (diffusion weighted)
can help to clearly distinguish infractions (figure 2.3). Which can also help to
detect lesion or tumor due to the abnormal phenomenon of infarction. Hence, in
summary, it is better to predict brain symptoms using multiple MRI sequences
(T1 and T2 enhanced version or weighted version may be used instead of T'1 or

T2).

Table 2.1: Comparison of T1, T2 and Flair in brain MRI 3

Tissue T1-Weighted T2-Weighted Flair
CSF Dark Bright Dark
White Matter(WM) Light Dark Gray  Dark Gray
Cortex Gray Light Gray Light Gray
Fat Bright Light Light
(infectligg?gg?né;téﬁﬁation) Dark Bright Bright

2.1.2 Medical imaging challenges

We have some observations on medical images as follows: (i) Boundary informa-

tion plays a significant role in many medical analysis tasks such as shape-based

2Table 2.1 and figure 2.1 are adapted from Davis C Preston, Case Western Reserve Uni-
versity
3Figure 2.2 is adapted from MRI sequences


https://casemed.case.edu/clerkships/neurology/Web%20Neurorad/MRI%20Basics.htm
https://casemed.case.edu/clerkships/neurology/Web%20Neurorad/MRI%20Basics.htm
https://www.youtube.com/watch?v=mOt2FeGHjaY

Ventricles y
> | Include CSF )

Figure 2.2: T2 versus Flair in detecting edema?

cancer analysis, size-based volume measure. (ii) Medical images contain weak
boundaries which make segmentation tasks much more challenging due to low
intensity contrast between tissues, and intensity inhomogeneity. For example,
the myelination and maturation process of the infant brain, the intensity distri-
butions of gray matter(GM) and white matter (WM) have a larger overlapping
thus the boundary between GM and WM is very weak, leading to difficulty
for segmentation. (iii) In the medical image segmentation problem, imbalance-
class data is naturally existing. Those two challenges of the imbalanced-class

data and the weak boundary object in medical imaging are visualized in Fig. 5.2



Diffusion-weighted

Figure 2.3: T2 versus Flair in detecting infarction?

and demonstrated in Fig.5.1. The fig.5.1(a) illustrates the imbalanced-class prob-
lem in medical images through the statistical class distribution of three different
datasets. For each dataset, the number of samples between classes are varied.
Fig.5.1(b) shows statistical values of Mean/Std/Median of pixel intensity in in-
dividual class when pixel values are in [0,1]. Within an individual dataset, the
difference between classes in term of Mean/Std/Median is very small. Strong
correlation between classes makes the problem of distinguishing classes more
challenging specially at the boundary as shown in Fig.5.2 which is known as

weak boundary problem.

2.2 Active Contour Technique for Image Segmentation

There are two main approaches in active contours: snakes and level sets. Snakes
explicitly move predefined snake points based on an energy minimization scheme,
while level set approaches move contours implicitly as a particular level of a

function.



2.2.1 Classic Snakes

The first model of active contour, named classic snakes or explicit active contour,
was proposed by Kass et al.[20]. In this approach, a contour parameterized by arc
length s as C(s)(x(s),y(s)) : 0 < s < 1. An energy function E(C) can be defined

on the contour such as

1
E(C) = / Bt Eont (2.1)
0

where E;,; and FE.,; are the internal energy and external energy functions, re-
spectively. The internal energy function determines the regularity, i.e. smooth

shape, of the contour
Eint(C(s)) = a|C'(s)]” + B|C" ()| (2.2)

Here a controls the tension of the contour, and g controls the rigidity of the
contour while C’(s) makes the spline act like a membrane (like “elasticity”) and
C"(s) makes it act like a thin-plate (like “rigidity”). The external energy term
determines the criteria of contour evolution depending on the image I(z,y), and

can be defined as

Ez’mage = wlineEline + wedgeEedge + wtermEterm (23>

The first term Ej,. = I(x,y) depends on the sign of wy,. which guides the

snake towards the lightest or darkest nearby contour. The second term FE.g45. =

—|vI(z,y)|? attracts the snake to large intensity gradients. The third term ey,

attracts the snake toward termination of line segments and corners. FEiep, i

(¢i¢yy—2¢’x¢y¢’my+¢§¢m) .
s . Fig.2.4

shows an example of snake with 70 snakes points forming a contour around the

defined using curvature of level lines in C: Ejepp =

moth. Each point moves towards the optimum coordinates, where the energy

10



function converges to the minimum.

Figure 2.4: An example of classic snakes [21]

The snake provide an accurate location of the edges only if the initial contour
is given sufficiently near the desired edges. Moreover, snake cannot detect more
than one boundary simultaneously because the snakes maintain the same topol-

ogy during the evolution stage.

2.2.2 Level Set Method

Level set (LS) based or implicit active contour models have provided more flexi-
bility and convenience for the implementation of active contours, thus, they have
been used in a variety of image processing and computer vision tasks. The basic
idea of the implicit active contour is to represent the initial curve C implicitly
within a higher dimensional function, called level set function ¢(z,y) : Q — R,

such as:

C = (z,y): ¢(x,y) =0,Y(z,y) € Q (2.4)

11



where Q2 denotes the entire image plane. Fig.2.5 (left)shows the evolution of level
set function ¢(z,y), and Fig.2.5 (right) shows the propagation of the correspond-

ing contours C.

A
©=0,t=1
Dpp(x,y) ™
Dy, Y) /
Do(X, Y) ﬁ/7
®=0,t=0

v

Figure 2.5: Level set evolution and the corresponding contour propagation: (a)
topological view of level set ¢(z,y) evolution, (b) the changes on the zero level

set C = (z,y) : ¢(z,y) =0

The evolution of the contour is equivalent to the evolution of the level set func-
tion, i.e. %—f = %‘i’y). One of the advantages of using the zero level set is that
a contour can be defined as the border between a positive area and a negative

area, so the contours can be identified by signed distance function as follows:

d(z,C)) if z is inside C
o) = 0 if x is on C (2.5)
—d(z,C)) if z is outside C
where d(x,C) denotes the distance from an arbitrary position to the curve.

The level set evolution can be written in the form as follows:

00 B
= FEIvel =0 (2.6)

where F is a speed function. In some particular cases, F' is defined as mean

12



— i [ VS
curvature, F' = div (|V¢|)

An outstanding characteristic of level set methods is that contours can split
or merge as the topology of the level set function changes. Therefore, level set
methods can detect more than one boundary simultaneously, and multiple initial

contours can be placed as shown in Fig.2.6

Because the computation is performed on the same dimension as the image plane
) the computational cost of level set methods is high and the the convergence

speed is quite slow

2.2.3 Edge-based Active Contours

Edge-based active contours are closely related to the edge-based segmentation.
Most edge-based AC models consist of two components: regularity and edge
detection. The first part determines the shape of contours whereas the second

one attracts the contour towards the edges.

Geodesic active contour (GAC) model, one of the most popular methods among
the edge-based active contour models, was proposed by Caselles et al.[22]. Given

an initial curve Cjy, the curve evolution is given as:

0p(z,y)
ot

= g(X(z, y))(s(¢(x, ) + F)| 7 ¢(x, y)] (2.7)

where g denotes a stopping function which is based on an edge indicator scalar

function, i.e. g(I(z,y)) IR The curvature x maintains the regularity of

_ 1
1 [velzy

the contours whereas the constant speed F keeps the contour evolving. In GAC
model, the contours move in the normal direction with a speed of x(¢(z,y)) + F

and therefore stops on the edges

Besides inheriting some disadvantages of the edge-based segmentation methods,

such as a reliance on the image gradient, omission of blurry boundaries and a

13
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Oia(x, y)

(I)FU(X: Y)

(a) the topological view of level set ¢(x,y) evolution

®=0,t=

»

2
®=0,t=0 1

[

A

v

(b) the changes on the zero level set C': ¢(z,y) = 0

Figure 2.6: Topology of level set function changes in the evolution and the prop-

agation of corresponding contours
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sensitivity to local minima and noise, edge-based active contour models have a
few of their own disadvantages (compared to the region-based active contour
models which will be discussed in the next section) that are due to the structure
of the speed functions and the stopping functions. It is easy to see that the
edge-based active contour models evolve the contour towards only one direction,
either inside or outside because of the constant speed F'. Thus, an initial contour
should be placed completely inside or outside the ROI, so some level of a prior
knowledge is still required. Later, Paragios [23] proposed Gradient vector flow
fast geodesic active contour by replacing the edge detection with a gradient

vector field.

2.2.4 Region-based Active Contours

Most region-based active contour models consist of two components: regularity
and energy minimization. The first part is to determine the smooth shape of
contours whereas the second part searches for uniformity of a desired feature

within a subset.

One of the most popular region based active contour models is proposed by
Chan-Vese (CV) [13]. In this model the boundaries are not defined by gradi-
ents and the curve evolution is based on the general Mumford-Shah (MS) [24]

formulation of image segmentation as shown in Eq.2.8.
E = fQ T — u|?dzdy + fQ/C |Vu|?dzdy 4 vLength(C) (2.8)

CV’s model is an alternative form of MS’s model which restricts the solution to
piecewise constant intensities and it has successfully segmented an image into

two regions, each having a distinct mean of pixel intensity by minimizing the
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following energy function:

E(c1,c2,¢) = pArea(w;) + vLength(C')
(2.9)
+A1/ (2, y) - 61l2dl‘dy+kz/ (2, y) — col*dwdy

where ¢; and ¢ are two constants. The parameters u, v, A1, Ay are positive pa-
rameters and usually fixing A\; = Ao =1 and p = 0. Thus, we can ignore the first
term in Eq. 2.9. Assume that we divide the region € into two regions, called w;

and wo, which are separated by the zero level set ¢. Mathematically,

w1 = Az,y:¢(z,y) >0} :inside ¢
we = {z,y:¢(x,y) <0} :outside ¢

=  A{z,y:é(z,y)=0}:0n¢
Q = wi Uwa Ul

In the Eq.2.9, the length and the area of zero level set are defined as:

Length(C) = [, 0(é(z,y))|Ve(z,y)|dzdy
Area(w)) = Jo H(o(z,y))dzdy
Where §(z) be a Dirac delta function. Thus the energy function is rewritten as

follows:

Bler, e, 6) = / H ¢z, y))dudy + v / 5(6(.) V(e ) drdy
@ @ (2.10)
+ M / L(z,y) — c1|*dady + >\2/ (2, y) — co|*dwdy

For numerical approximations, the ¢ function needs a regularizing term for

smoothing. In most cases, the Heaviside function H and Dirac delta function
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§ are defined as in (2.11) and (2.12), respectively.

H(x) = % <1 + %arctan (%)) (2.11)
Se(x) = H'(z) = %EMLQ:? (2.12)

Ase— 0, — 4, and H. — H. Using Heaviside function H, the Eq.2.10 becomes

Bler, ca, ) = 1 /Q H(6(x.y))dady + v /Q 5(6(, )V (x, ) ddy

+ A1 /Q L(z,y) — c1|*H (¢ (z,y))dzdy + Ao /Q L(z,y) — co (1 = H(¢(x,y)))dxdy

(2.13)

In the implementation, they choose ¢ = 1. For fixed ¢; and co, gradient descent

equation with respect to ¢ is

9p(z,y)

5 = 00z, y)lrr(e(e, y) — p = ((z,y) - c1)” + XLz, y) — 2)?] (2.14)

where 6, is a regularized form of Dirac delta function and ¢y, co are the mean of
inside the contour w;, and the mean of the outside of the contour wyy, respec-

tively. The curvature x is given by

. . Agﬁ o ¢mx¢§ - 2¢m¢y¢xy + ¢yy¢;2n
K(o(x,y)) = —div (M) =- N q%)l,g, (2.15)
For fixed ¢, gradient descent equation with respect to ¢; and ¢ are
. > ey L@ y) H(o(2,y))
1 =
H
>ouy H(0(z,y)) (2.16)

>owy Y@, y)(1 = H(d(z,y)))
Zx,y(l - H((b(l’, y)))

Cco =
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The optimal level set function ¢ can be computed by solving the associate Euler-

Lagrange equation. Here, assuming c¢; and ¢y are fixed

:/fzf(gb,V(b)dxdy, (2.17)

then the Euler-Lagrange equation is given by

oF g. 9 _ (2.18)

9 Vo
We compute each term in the above equation as follows

= 8( (¢ )WCN*HAH(@+)\1![—01\2H(¢)+>\2\I—Cz|2(1—H(¢))) (2.19)

of
0
= 0| V|22 a¢ Lot pid(9) + ML = e120(0) — Mol — c2f?8(9)
in which, the first term vanishes since we care about the zero level set (¢ = 0).
Vel =0z + 9
) - 20x . s
561Vl = 3 T e (2.20)
9 20 Py
96,1Vl = 3 — el
9 v
= gval Vol = war
9  _ o)
Thus,
(2.21)

nw— )\1|f—01|2 +)\2|I—02|2} =0

of of
a—¢—V Ve —0(o){v le(|v¢|)

The above equation is valide when ¢ is the optimal solution. Parameterizing the

descent direction by an artificial time t 0, we can formulate an iterative update
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equation for ¢:

¢ _
ot

Vo

74l — = M| = c1]® + Xa|T — 2]} (2.22)

5(6){vdiv

Note that when the time derivative vanishes, ¢ will stop updating.

2.3 Deep learning

In this section, we will mainly discuss techniques in convolutional neural net-

works (CNN) and generative adversarial networks (GAN).

2.3.1 Multi-Layer Perceptron (MLP)

Deep learning models, in simple words, are large and deep artificial neural net-
works. Let us consider the simplest possible neural network which is called
"neuron" as illustrated in Fig. 2.7. A computational model of a single neu-
ron is called a perceptron which consists of one or more inputs, a processor, and

a single output.

Sigmoid

l"
.
B

NV

(b) Plot of different activation
functions, i.e. Sigmoid, Tanh and
rectified linear (ReLU) functions

~~

a) An example of one neuron which
takes input x = [x1, x9, 23], the
intercept term +1 as bias, and the

output o.

Figure 2.7: An example of one neuron and its activation functions
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In this example, the neuron is a computational unit that takes x = [z, x9, 23]
as input, the intercept term +1 as bias b, and the output o. The gold of this
simple network is to learn a function f : RN — RM where N is the number of
dimensions for input x and M is the number of dimensions for output which is
computed as o = f(W,x). Mathematically, the output o of a one output neuron

is defined as:

N

o= f(x,0)=0¢ (Z w;T; + b) = o(W'x +b) (2.23)

1=1

In this equation, ¢ is the point-wise non-linear activation function. The com-
mon non-linear activation function for hidden units are chosen as a hyperbolic
tangent (Tanh) or logistic sigmoid as shown in Eq. 2.26. A different activation
function, the rectified linear (ReLU) function, has been proved to be better
in practice for deep neural networks. This activation function is different from
Sigmoid and (Tanh) because it is not bounded or continuously differentiable.
Furthermore, when the network goes very deep, ReLLU activations are popular
as they reduce the likelihood of the gradient to vanish. The rectified linear acti-
vation (ReLU) function is given by Eq. 2.26. These functions are used because
they are mathematically convenient and are close to linear near origin while
saturating rather quickly when getting away from the origin. This allows neural
networks to model well both strongly and mildly nonlinear mappings. Fig. 2.7

is the plot of Sigmoid, Tanh and rectified linear (ReLU) functions.

1

2rx—1
exrp
ReLU(x) = max(0, x) (2.26)
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Notably, the system becomes linear with matrix multiplications if removing the
activation function. The Tanh activation function is actually a rescaled version
of the sigmoid, and its output range is [-1,1] instead of [0,1]. The rectified linear
function is piece-wise linear and saturates at exactly 0 whenever the input is less

than 0.

A neural network is composed of many simple “neurons,” so that the output of
a neuron can be the input to another. An special case of a neural networks is

also called multi-layer perceptron network (MLP) and illustrated in Fig. 2.8.

Layer I, Layer |, Layer I,

Figure 2.8: An example of multi-layer perceptron network (MLP)

A typical neural network is composed of one input layer, one output layer and
many hidden layers. Each layer may contains many units. In this network, x is
the input layer, o is the output layer. The middle layer is called hidden layer.
In the Fig. 2.8, the neural network contains 3 units of input layers, 3 units of

hidden layer, and 1 unit of output layer.

In general, we consider a neural network with L hidden layers of units, one layer
of input units and one layer of output units. The number of input units is N,
output units M, and units in hidden layer I is N'. The weight of the j** unit in
layer [ and the " unit in layer [+ 1 is denoted by w;. The activation of the ‘"

unit in layer [ is hi. The input and output of the network are denoted as x(n),
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o(n), respectively, where n denotes training instance, not time.

|i lﬁ] Person
:E |ﬂ Beach
e 17l Sand

N

-

Fully connected layer

Figure 2.9: Architecture of a typical convolutional network for image classifi-
cation containing three basic layers: convolution layer, pooling layer and fully

connected layer [25]

2.3.2 Convolutional Neural Networks (CNNs)

Neural Networks [26, 27| are a special case of fully connected multi-layer per-
ceptrons that implement weight sharing for processing data that has a known,
grid-like topology (e.g. images). CNNs use the spatial correlation of the signal
to constrain the architecture in a more sensible way. Their architecture, some-
what inspired by the biological visual system, possesses two key properties that
make them extremely useful for image applications: spatially shared weights and
spatial pooling. These kind of networks learn features that are shift-invariant,
i.e., filters that are useful across the entire image (due to the fact that image
statistics are stationary). The pooling layers are responsible for reducing the
sensitivity of the output to slight input shift and distortions. Since 2012, one of
the most notable results in Deep Learning is the use of convolutional neural net-
works to obtain a remarkable improvement in object recognition for ImageNet

classification challenge [28] [29].

A typical convolutional network is composed of multiple stages, as shown in Fig.
2.9. The output of each stage is made of a set of 2D arrays called feature maps.

Each feature map is the outcome of one convolutional (and an optional pooling)
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filter applied over the full image. A point-wise non-linear activation function is
applied after each convolution. In its more general form, a convolutional network

can be written as:

h’ =x;
h' =pool' (oy(w'h'™' +b')) Vi e 1,2,...L; (2.27)
o =h" = f(x,0),

where w!,b’ are trainable parameters as in MLPs at layer I. x € R&>h>w ig
vectorized from an input image with ¢ is color channels, h is the image height
and w is the image width. o € R"*"**" ig vectorized from an array of dimension
K x w' of output vector (of dimension n). pool' is a (optional) pooling function

at layer [.

CNNs have been applied in image classification for a long time [30]. Compared to
traditional methods, CNNs achieve better classification accuracy on large scale
datasets [28, 31]. With large number of classes, proposing a hierarchy of clas-
sifiers is a common strategy for image classification [32]. Visual tracking is an
another application that turns the CNNs model from a detector into a tracker
[33]. As an special case of image segmentation, saliency detection is another
computer vision application that uses CNNs [34, 35]. In additional to the pre-
vious applications, pose estimation [36], [37] is another interesting research that
uses CNNs to estimate human-body pose. Action recognition in both still images
and in videos are special case of recognition and are challenging problems. [38§]
utilizes CNN-based representation of contextual information in which the most
representative secondary region within a large number of object proposal regions
together the contextual features are used to describe the primary region. CNNs-
based action recognition in video sequences are reviewed in [39]. Text detection

and recognition using CNNs is the next step of optical character recognition
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(OCR) [40], word spotting, [41]. Going beyond still images and videos, speech
recognition, speech synthesis is also an important research field that have been
improved by applying CNNs [25, 42]. In short, CNNs have made breakthroughs

in many computer vision areas i.e image, video, speech and text.

2.3.3 Generative adversarial nerwork (GAN)

Generative adversarial network (GAN) comprises of two factors: generative (de-
noted as G) and discriminative (denoted as D) models [43]. The generator G
produces images from random vector noises by capturing and mimicking the
distribution of images in the training set so as to fool the discriminator D; Dis-
criminator D is to estimate the possibility of any given image’s being from the
training data. Both G and D could be either a linear mapping or non-linear
mapping function such as a multi-layer perceptron [44]. The process of GAN
can be considered as a complementary feedback pair. Where the generator striv-
ing to provide secured system while the discriminator trying to test the system
by cracking it. Noted that these two sub-networks share their results with each

other, of whether the system can be cracked.

The generator receives random noise vector and outputs counterfeit images
through its black boxes network. The discriminator distinguish whether the in-
putted images (either generated images or sampled images) are natural (real)
or not by estimating the probability of the inputted images being artificial. The
principle of loss function used in GANs is to select the parameters for the models
which will maximize the likelihood of the training data. This, on the other hand,
can be solved using the log likelihood instead, as to reduce the complexity in

calculation: the product of all samples will become sum in log likelihood.
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0* = argmax Hpmodel (a:(i); 0) (2.28)

0 i
= argmax lOg Hpmodel(m(i); 9) (229>
0 i=1
= argmax 10g Prmode 290 2.30
! ; dei( ) (2.30)

The use of maximizing the likelihood can also be considered as minimizing the
Kullback-Leibler Divergence (KLD), which estimates the distribution distance
between the generator and model. By minimizing KLD between generator and
model distribution, the resulted group of parameters is expected to be the same

as maximizing the log-likelihood of the training set.

0" = &I“g{onin DKL(pdata(x)Hpmodel(x; 9)) (231)

0" = argmaxFE,p,.,. 108 Pmoder(z|0) (2.32)
0
The cost used for the discriminator is:
J(D)(pD) p(@)y _ _1 1 (2.33)
(00, 0)) = By logD() — 3 Falog(1 — D(G(2))) -

So far we have specified the loss function for only the discriminator. The next

step is to do so for the generator as well.

The simplest version of GANs game is a zero-sum game, in which the sum of all

player’s costs is always zero.

JG@ — _ (D) (2.34)
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The biggest problem facing in GANs that community pays attention to is the
issue of non-convergence. Most profound models are trained using optimization
algorithms such as SGD, ADAM to figure out a low value of loss function. While
numerous problems can interfere with optimization algorithms which creates a
stable progress trying to reduce the value of loss function. The training of GANs
is to seek for the equilibrium parameters of both generator and discriminator.
To gain some intuition for how gradient descent performs, we delivered some

experiments of loss we have conducted while training GANS.

Common problems in training GAN. Aforementioned, GAN is a successful
method in the image generation, but still challenging to train. It is difficult
to achieve the equilibrium point where the ability of generator is competitive
compared to discriminator’s one: if the discriminator works poorly, the generator
does not have the accurate feedback so the loss function can not represent the
performance of model and it causes a lot of troubles when we were tracking the
loss function to evaluate how well the model works. In brief, GAN loss function
can hardly converge. Vanishing gradient is also another disadvantage of GAN,
this occurs when the discriminator does a perfect job in recognizing real images.
Therefore the loss function L falls to nearly zero and we end up with no gradient

to update the loss during learning iterations.

GAN variations. For different purposes, there exist various popular GAN
variances. To directly tackle the problems mentioned above in training GANS,
WGAN is created to solve the converge and gradient vanishing problems by
using Wasserstein distance to measure the difference between two probability
distributions under K-Lipschitz continuous condition [45, 46]. Wasserstein dis-
tance is claimed to be better than either Jensen Shannon or Kullback Leibler
divergence, for a stable training process using gradient descents as it represents
a smooth measure when two distributions are located in lower separate dimen-

sional manifolds. The conditional GANS (cGANSs) [47], on the other hand, with
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an additional label to better exploit the information from the dataset allows
a partially customizable synthesis images. Similary, InfoGAN [48] also utilizes
the information from the given dataset, but in this case, for a much more com-
plex dataset, it tries to exploit the similar information obtained from the training
dataset and the target latent space. Deeper Convolutional GAN or DCGAN [49],
another simple but successful stable training unsupervised GAN model, lever-
ages the batch normalization, convolutional stride, and transposed convolution,
with prospective application in image style transferring. For image domain trans-
fering, there are multiple famous models such as CycleGAN (detailed below),
Recycle GAN [18, 19], Style GAN [50] for generating gradually higher resolu-
tion images by stacking layers training from lower resolution ones, and those
for pixel-level like pix2pix [51], etc. With similar idea of generating high quality
images from lower ones, StackGAN [52] started with sketch images as low-level
resolution given the text description. Or the recent CVPR 2020 SegAttnGAN
model [53] also generates high quality images from text via different stages gen-
erating lower resolution images as a multi-scale generator (instead of starting

from sketch as the lowest resolution image).

Distance metrics. Different distance metrics used in GAN-variation models
can highly affect the performance of the models. Hence, in this part we will
discuss commonly used distance metrics in GAN (as shown in the original paper

of WGAN, Wasserstein-1 outperforms the others).

KL Divergence. The relative entropy or Kullback—Leibler divergence between

two probability distributions P(x) and Q(x) that are define.

P(z)

00 (2.35)

Di1(P||Q) =) P(x)log
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The relative entropy satisfies Gibbs’ inequality.

Dg1(P||Q) > 0 with equality only if P = Q. (2.36)

Note that in general the relative entropy is not symmetric under interchange
of the distributions P and @Q: in general Dy (P||Q) # Dkr(Q||P), so Dkr,
although it is sometimes called the ‘KL distance’, is not strictly a distance. The

relative entropy is important in pattern recognition and neural networks.

Jensen-Shannon Divergence. The Jensen-Shannon (JS) divergence

JS(B,, Py) = KL(P,||P) + K L(B|[Py) (2.37)

where P, is the mixture @. This divergence is symmetrical and always

defined because we can choose p = P,.

The Earth-Mover (EM) distance or Wasserstein-1.

LS TR R

where II(P,, P;) denotes the set of all joint distributions ~(z,y) whose marginals
are respectively P, and P,. Intuitively, v(z,y) indicates how much “mass” must
be transported from x to y in order to transform the distributions P, into the
distribution P,. The EM distance then is the “cost” of the optimal transport
plan.

As this EM distance or Wassertein-1 also constrainted to be under Lipschitz
continuous condition searching for the upper bound of expected value distance
between two sample which sampled from difference distributions. We shall dis-

cuss Lipschitz Condition and its former version - the Picard theorem.

Picard theorem Let f(x,y) and 9df/dy be continuous functions of x and y on
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a closed rectangle R with sides parallel to the axes. If (zg,yo) is any interior
point of R, then there exists a number h > 0 with the property that the initial
value problem ¢’ = f(z,y),y(z0) = yo has one and only one solution y = y(z) on

the interval |z — zg| < h.

Lipschitz Condition is an advanced version of Picard Theorem which contributes
a solid foundation to optimization especially in finding the optimal point. For
instance, our assumption that df/dy is continuous on R which is its hypotheses,
is used only to obtain the inequality of Lipschitz statement. The definition is

stated below:

Function f(x,y) satisfies a Lipschitz condition in the variable y on a set A C R?
if a constant k > 0 exists with |f(z,y1)—f(x,y2)| < kx|y1—y2| , With (x,41), (2, y2)

are in A and L is Lipschitz constant.

2.3.3.1 Cycle GAN

Image to image translation is now a trending problem in computer vision, with
various applications such as style transferring or novel images generating; How-
ever, an attractive question relating to image translation is how to translate
images without paired examples. A favored solution for this is the use of Cycle
Generative Adversarial Networks (CycleGAN) technique: leveraging the cycle
consistency loss to train unsupervised image translation via Generative Adver-
sarial Networks architecture using only the unpaired assemblage of images from
the two groups. This report summaries the idea of CycleGAN as well as an

overview of its application.

As it is a hindrance to collect paired images for multiple domains, there is a de-
sire for techniques assisting to automatically train style transferring. Hence, the
present of Cycle Generative Adversarial Network (CycleGAN) has laid one of

the first stones for techniques attempting to translate images between different

29



domains in the absence of paired examples [18]. The original paper of CycleGAN
proposes two key ideas. One is a variation of Generative Adversarial Network
(GAN) with forward and inverse mapping. The other huge improvement is mod-
ifying the original loss function of GAN with one loss for discriminator and
another for generator by two components are: adversarial loss and cycle consis-
tency loss. The idea of cycle consistency loss was to avoid the images, the source
distribution, to be mapped to random images from the target distribution. The
author suggests using FCN score 2 for evaluating performance of Cycle GAN

47][18).

CycleGAN uses two generators and two discriminators. One is generator G to
convert images from distribution X to the distribution Y. The other generator is
called F converting images from Y to X. Each generator has their corresponding

discriminator to distinguish between its generated images and the real ones.

Generator architecture has three sections: an encoder, a transformer, and a de-
coder. The input image is fed into the encoder to reduce the representation
size of images and feed to Convolutions layers to extract the representation of
small region and then is passed to the transformer. After that result goes to
the decoder, which use convolutions to enlarge the representation size. The dis-
criminator output the probability of the fixed small region of input images. This
small region is called "patch" images. It is more effective in the way that focuses

on more texture, which is usually being changed in an image translation task.

The loss function was proposed in the paper has two parts, an adversarial loss
and a cycle consistency loss. The adversarial loss attempts to fool the corre-
sponding discriminator. However, adversarial loss alone has limitation to pro-
duce "real" images. For example, a generator generates an image Y which has

distribution mostly like distribution X, but perceptually looked nothing like x,

2to measure the quality of the generated images conditioned on an input segmentation map
[54]
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the result will output a high adversarial loss; Though that is not what we ex-
pect. The proposed loss, cycle consistency loss, solves this issue by relying on
the expectation that if an image was converted to the other domain and back
again, by successively feeding it through both generators. The output will assure

the condition that

F(G(z)) = x (2.39)

G(F(y) =y (2.40)

This method has huge applications where paired training data does not exist,
especially in style transfer, season transfer, photo enhancement, biomedical, et
al. Beside these applications, the method remains several limitations such as:
not working well with the problems which require understanding of geometric

changes on the object.
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CHAPTER 3
RELATED WORKS

3.1 CNN-based Medical Image Segmentation

Over the last few years, with the resurgence of deep learning and its application
have led to the success of deep convolutional neural networks in the field of
segmentation, image segmentation methods based on deep learning have made
a large progress in terms of accuracy and efficiency. In particular, CNN-based
model gave various successful models to date which can be devided into two

categories, one-stage and two-stage segmentation method.

3.1.1 Single-stage segmentation methods

Single-stage segmentation methods which typically have an encoder-decoder
structure like Unet. In the encoding part the network try to learn the represen-
tation feature of images by sliding convolutional kernel through whole images to
learn different variety of edges or features in the images. For the decoding part,
deconvolution operators are applied to each pixels which contain the information

of instance in order to generate the instance mask.

3.1.1.1 Fully Convolutional Network(FCN)

As an popular approach to segmentation problem, Fully Convolutional Networks
have a great influence on image semantic segmentation progress, which is pro-
posed by Long et al. (2015) for pixel-wise labeling by replacing skip layer and
bilinear interpolation with fully convolutional networks to expand the applica-
tion of classification network to dense prediction. The authors proposed applying
deconvolution operator to the output activation maps where the pixel-wise result
can be calculated. Another important contribution of the authors is fusing the

output with shallower layer’s output so that preserve the contextual spatial in-
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formation of an image as the filtered data progresses go deeper into the network.

The architecture of the network is show in the below figure.3.1 The work has

“tabby cat”
qJE,f,a Sty e o
\

convolutionalization

tabby cat heatmap

_lcjﬁl hﬁﬁﬁg?bb@

Figure 3.1: FCN architecture [55]

laid an evidently demonstration that deep networks can be trained in end-to-end
architecture for image segmentation. Despite its efficiency, FCN can not capture
the global context information of an object or volume in efficient way. Therefore
many researcher try to overcome this problem by proposing method to improve
the performance of FCN. Liu et al [56] proposed Parsenet, to address problems
ignoring global context information by using the average feature for a layer to

augment the features at each location to add global context to FCN.

Due to the effectiveness of FCNs-based method, a large number of researcher
have applied it to medical image segmentation problems. Wang et al [57] leverage
FCN-based method to segment multi-modal Magnetic Resonance images with
brain tumor. Yuan et al [58] designed 19-layer deep convolutional neural networks
to deal that is trained end-to-end to deal with automatic skin lesion segmentation

task.
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3.1.1.2 Unet-like model

U-Net [7] has been widely used as encoder-decoder Deep Learning based archi-
tecture for semantic segmentation that can produce highly reliable results on
various metrics like: dice score, surface distance, etc. Unet consists of a down-
sampling fully convolutional network (FCN) followed by an upsampling FCN
known as the network’s contractive and expansive paths in the meanwhile the
skip connections between the downsampling and upsampling branch are em-
ployed to provide local information to the global information while upsampling.
Because of these attributes, the networks has a huge amount of feature maps in
the upsampling path that can be transformed information from raw images to

abstract label. An illustation of Unet is given in Fig. 3.2.

& l“I""I 3 I“'I"I = conv 3x3, ReLU
T L I L copy and crop
I’.'. e e # max poal 2x2
22§ jom 435 & # up-conv 2x2
-'_"— = conv 1x1

Figure 3.2: Unet architecture [7]

The potential application of Unet in biomedical image segmentation task is
demonstrated by its success for being the winner method on the ISBI challenge
for segmentation of neuronal structures in electron microscopic stacks, further-

more it has been shown the network work fast, take less than a second on typical
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GPU to segment one 512x512 image. The success of Unet in medical image seg-
mentation task has attracted attention of researchers in the world. Dong et al.
[59] incorporated Unet-based model into data augmentation technique to solve
the problem in brain tumor segmentation on Multimodal Brain Tumor Image
Segmentation datasets (BRATS 2015). There are also multiple researches tack-
ling the original Unet architecture trying to enhance the result. Such as Unet++
[60] - adding the skip connections, or in Double-U Unet [61] - adding a constraint
of the reconstruction, or in U?net [62] - leveraging the lower level feature as an
attention to the regression loss. There also others focus more on the feature
representation of the original Unet model, such as the Hyper-Dense Net [63]
leveraging the features extracted from the input using Dense Net. Ci¢ ek et
al.[8] further modified the U-Net architecture by replace 2D convolution oper-
ations with 3D convolution ones to create a model that can generalize well on
3D volumes, the Xenopus kidney without full annotation of 3D volumes because
of few annotation label data problem in medical images, their work achieved
good results on Xenopus kidney and highly variable 3D structure dataset. 3D
CNNs with residual connections were also proposed in Deep Medic [64] which
is an another successful deep learning approach in medical segmentation i.e.
brain tumor segmentation. These 3D U-nets were shown to outperform current
2D medical imaging segmentation models in many 3D medical imaging datasets
including prostate, kidney, brain tumor, infant brain segmentation. Thus, we
employ 3DUnet as a framework that combine with the other proposed methods

to improve the performance in medical image segmentation for our project.

3.1.2 Two-stage segmentation methods

This method for image segmentation consists of two stages: bounding box detec-
tion and semantic segmentation within each box. Among different CNN-based

semantic segmentation approaches, Fully Convolutional Network and Mask-R-
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CNN got enormous of attention which will be discussed.

3.1.2.1 Mask-R-CNN in image segmentation

Mask-R-CNN [65] extends Faster R-CNN to pixel-level image segmentation.
Based on architecture of Faster R-CNN, it expanded the method for predict-
ing an object mask in parallel with classification and localization. The mask
network is a small- fully-connect network applied to each Region of Interest,
predicting a segmentation mask in a pixel-to-pixel label mapping between raw
images and mask predictions. In the first stage, the network detects objects and
generate object proposals while the second stage is responsible for classifying
these proposals to object bounding boxes and then generate masks. Mask-R
CNN integrate Feature pyramid network as the backbones to generate region of

interest features to increasing the accuracy in object detection phase.

Figure 3.3: Mask-R-CNN architecture [65]

Multi-task loss is employed during training process to calculate the total loss on
each sampled Rol as

L= Lcls + Lbow + Lmask (31)
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respectively to L. is the classification loss over ground truth and predicting
class, Ly, is the regression loss of bounding boxes when there is an object. L,,qsk
is calculated using the average binary cross-entropy loss. The author proposed
new kind of loss function L, to helps the network with generating masks for
every class without competition among classes based on the classification branch
to predict class label used to select the output mask. This decouples mask and
class prediction produced good instance segmentation results compared to FCNs,
another two-stage image segmentation method, which uses a per-pixel softmax

and a multinomial cross-entropy loss.

Though Mask-R-CNN is a good method for image segmentation, which was
practically worked well on common object segmentation real life dataset like:
Cityscapes, COCO, it’s empirically not good at biomedical images segmentation
task due to morphological variant shape of tissue in medical images such as

cancer tissue especially brain MRI images.

3.2 GAN-based Medical Image Segmentation

Recently Generative adversarial networks(GANs) catched a lot of attention in
biomedical images community because of their ability in data generation without
neither explicitly modelling the probability density function or providing causal-
ity inference. Gan was proposed by Ian Goodfellow et at., 2015. GAN comprises
of two networks which are trained simultaneously, with one called Generator and
the other ones called Discriminator. The generator focuses on image generation
while Discriminator network was trained to detect fake samples which were gen-
erated by the Generator network. An illustration of GAN is shown in the given

image 4.

This has proven to be useful in many task such as image-to-image translation,

4Figure 3.4 is adopted from A Short Introduction to Generative Adversarial Networks
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Figure 3.4: GAN architecture 4

data augmentation relying on the generative aspect of GAN model, which can
help in discovering the underlying distribution of objects or volumes in the train-
ing data then learning to generate new images. This property makes GANs very
potential in dealing with data scarcity for medical image data. The basic frame-
work for image-to-image translation has been proposed by Wolterink et al [66].
By training a CNN jointly with an adversarial CNN, the author aim at improv-
ing the CNN’s ability to generate images with similar feature to that of reference
routine-dose CT images. Chen et al [67] leverage GAN to solve the problem in
reconstructing magnetic resonance images (MRI). In image reconstruction of or-
gans, paired training samples are hard to get so Kang et al [68] proposed to use
CycleGAN with an identity loss in denoising of cardiac CT. GAN-based models
can also be used as an augmentation method, by translating from one type of
medical images to others. One of its successful network with various applications
(such as transferring PET to CT, correct MR motion, PET denoising, etc.) is the
MedGAN, which tries to improve the global consistency using non-adversarial
losses with conditional adversarial framework and a CasNET generator [69, 70].

Similarly to the idea of leveraging loss functions, the Perceptual Adversarial

38



Networks (PAN) [71] proposed a perceptual adversarial loss together with the
generative adversarial loss build a novel loss function. Also, recently there exists
a novel method named Cycle GAN Segmentation using the dataset from one
domain with better segmentation result to translate to and enhance the seg-
mentation result in another domain; the idea used here is trying to force the
translated images to have the same segmentation result with it paired original

real image [6], which will be detailed in the later sections.

The sucess of GAN and GAN-based method in medical imaging tasks motivate
us using the property of generating new images to solve our problem in data
scarcity. In particular, because of less annotation data in our dataset, in this
project, we proposed to employ CycleGAN to help with guiding the weight

initialization process during training time.

3.3 Active Contour-based Medical Segmentation

Though medical image segmentation method can detect true regions really well
with deep learning based method, the sensitive noise causes the boundary of
extracted region in the volume could be segmented inaccurately. Leveraging this
observation in medical imaging, many scientists suggest using boundary refine-
ment as an approach to medical image segmentation. Hadon and Boyce [72]
proposed a two-stage method (initialize region segmentation then refine mask)
with co-occurrence matrix used as a feature space and clusters within it are
the considered regions and boundaries. Sato et al. [73] proposed a technique
to obtain an accurate segmentation of 3D medical images for clinical applica-
tions by combining the gradients of the boundary and its neighbourhood pixels
and then applies the gradient magnitude based on edge detectors such as So-
bel detector for boundary improvement. Over the past few years, many efforts
(74, 75, 76] have utilized Active Contour and have been proposed to segment the

object with weak boundary. Among approaches, active contour (AC) methods
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are powerful tools thanks to their ability to adapt their geometry and incor-
porate prior knowledge about the structure of interest. For instance, Level Set
(LS) [13], an implementation of AC using energy functional minimization [24]
has been proven to overcome the limitations of uniquely gradient-based models,
especially when dealing with data sets suffering from noise and lack of contrast
such as weak boundary. Li et al. [77] solved the problem of segmenting images
with intensity inhomogeneity by using a local binary fitting energy. By mini-
mizing the unbiased pixel-wise average misclassification probability, Wu et al.
[78] formulated an active contour to segment an image without any prior infor-
mation about the intensity distribution of regions. By realizing curve evolution
via simple operations between two linked lists, Shi and Karl [79] achieved a fast
level set algorithm for real-time tracking. Also, they incorporated the smooth-
ness regularization with the use of a Gaussian filtering process and proposed the

two-cycle fast (TCF) algorithm to speed up the level set evolution.

In addition to methods for multi-region image segmentation, including mean-
shift clustering, spectral segmentation, greedy algorithms, learning approaches,
level set-based segmentation is another common approach in computer vision.
Level set -based multi-region image segmentation approaches either use a dis-
crete labeling problem formulation and solve it using graph-cuts [80] or minimize

the segmentation functional using convex relaxation techniques [81].

The traditional level set framework is geared towards binary-phase image seg-
mentation. To overcome this limitation, various methods have been developed,
including [82] which associates a level set function with each image region, and
evolves these functions in a coupled manner. Later, [83] performs hierarchical
segmentation by iteratively splitting previously obtained regions using the con-
ventional level set framework. [84] suggested using a single level set function to
perform the level set evolution for multi-region segmentation, it requires man-

aging multiple auxiliary level set functions when evolving the contour, so that
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no gaps/overlaps are created. [85] partitions an image into multiple regions by a
single, piecewise constant level set function, which is obtained using either aug-
mented Lagrangian optimization, or graph-cuts. Later, Li, et al. [86] proposed
an adaptive regularized level-set method to ensure the level-set curve does not
pass through weak object boundaries. New approaches [87], [88], [89] have been
developed to replace the level set model, which investigate effective optimization
schemes [90]. Generally, the level set model minimizes a certain energy function
via gradient descent [91], making the segmentation results prone to getting stuck
in local minima. To conquer this problem, Chan et al. [92] restated the traditional
Mumford-Shah image segmentation model [24] as a convex minimization prob-
lem to obtain the global minimum. The above methods have obtained promising
performance in segmenting high quality images. However, when attempts are
made to segment images with heavy noise, this leads to poor segmentation re-
sults. Existing methods assume that pixels in each region are independent when
calculating the energy function. This underlying assumption makes the contour
motion sensitive to noise. In addition, the implementation of level set methods is
complex and time consuming, which limits their application to large scale image
databases. To maintain numerical stability, the numerical scheme used in level
set methods, such as the upwind scheme or finite difference scheme, must satisfy
the Courant-Friedrichs-Lewy (CFL) condition [93], which limits the length of

the time step in each iteration and wastes time.

Recently, [94] utilized LS [13] into deep learning framework to improve segmen-
tation performance on medical images. However, the two energy terms corre-
sponding inside energy and outside energy are computed with assumption that
the mean values of inside contour and outside contour are constants and set as 1
and 0. Furthermore, [94] applied LS [13] an entire image domain. Different from
[94], our proposed network makes use of LS as an attention gate on narrow band

around the contour. In addition, the mean values of inside contour and outside
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contour in our framework are computed using the deep feature map from the
network. Besides the weak boundary object, the unbalanced data problem in
medical image segmentation has lately been gotten seriously attention [95]. In
[95], a boundary loss was proposed and it is defined as a distance metric on
the space of contours (or shapes), not regions, namely, the objective function is
defined as a distance between two contours. Furthermore, the boundary loss [95]
is implemented as distance between single pixel on the contour, which is high
time consumption. Different from boundary loss [95] which considered as the
distance between predicted boundary and groundtruth one, our proposed NB-
AC loss treats the object contour as a hyperplane and all data inside a narrow
band as support information that influences the position and orientation of the
hyperplane. Our NB-AC loss with attention mechanism which focuses on on the
contour length with the region energy involving a fixed-width band around the

curve or surface.

Some limitations of variational level set approaches are observed as

follows:

e They are unsupervised approaches and therefore require no learning prop-
erties from the training data. Thus, they have difficulty in dealing with

noise and occlusions
e There are many parameters which are chosen by empirical results

e The are build off of gradient descent to implement the non-convex energy
minimization and can get stuck in undesired local minima and thereby lead

to erroneous segmentations

e Most of the level set based approaches are not able to robustly segment

images in the wild

e They often give unpredictable segmentation results due to unsupervised
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behaviors

e The accuracy of segmenting results strongly depends on the number of

iterations which is usually set as a big number

3.4 Class Imbalanced Data

Most of the traditional classifiers assume the input data to be well-behaved in
terms of class distributions, balanced size of classes, etc. However, high class
imbalance is naturally inherent in many real world applications, robust classifi-
cation with imbalanced data is an important area of research. Even the recent
development of deep learning shows incredible performance in many domains
along with its increasing popularity there is still few existing deep learning ap-
proaches for class imbalance. Thus, investigating the use of deep neural networks
for problems of class imbalance is important and interest. This paper is examine

existing deep learning techniques for addressing class imbalanced data.

Class imbalance has been studied thoroughly over the last decades using either
traditional machine learning models, i.e. non-deep learning or advanced deep
learning. Despite recent advances in deep learning, along with its increasing
popularity, very little empirical work in the area of deep learning with class
imbalance exists. The previous works using deep leraning to class imbalance
can be mainly divided into three groups: data-level methods, algorithm-level

methods and hybrid-level methods as follows:

e Data level methods: Those methods aims at altering the training data
distribution by either adding more samples into minority class or removing
samples from the majority class to compensate for imbalanced distribution

between classes.

e Algorithm level methods: Those methods aims at making a modification to
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the conventional learning algorithms to reduce bias towards the majority

by adjusting misclassification costs.

e Hybrid methods: Those methods are a combination of the merits of both

data level and algorithm level strategies

Three categories of solving imbalanced data problem are detailed as follows

3.4.1 Data level methods

This section explores data level methods for addressing imbalanced data with
Deep Neural Networks. Most of these methods preprocess a dataset so that the
number of labeled examples from both the classes become comparable. There are
two approaches in this catergory: (i) under-sampling examples from the majority

class ; (ii) over-sampling examples from the minority class.

Anand et al [96] proposed the first work which explores the effects of class
imbalance on the backpropagation in a shallow network. The authors show that
in the problem of imbalanced data, the majority class usually dominates the
network gradient which is responsible for updating the model’s weights. With
such update, the error of the majority class is quickly reduced while the error of
the minority class is increased. This causes the network to get stuck in a slow

convergence mode.

Hensman and Masko [97] studied the impact of imbalanced training data on
Convolutional Neural Network (CNN) performance in image classification. They
showed that imbalanced training data can potentially have a severely negative
impact on overall performance in CNN, and that balanced training data yields
the best results. They conducted the experiments on The CIFAR-10 [98] bench-
mark dataset, comprised of 10 classes with 6000 images per class. The dataset

is used to generate 10 imbalanced subsets for testing varying class sizes, ranging
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between 6% and 15% of the total data set. In addition to varying the class size,
the different distributions also vary the number of minority classes. Hensman
and Masko chose a variant of the AlexNet [99] as backbone to perform classifi-
cation task. The baseline performance was defined by training the CNN on all
distributions with no data sampling. The over-sampling method being evaluated
by randomly duplicating samples from the minority classes until all classes in
the training set had an equal number of samples. Their imperial results have
shown that over-sampling is a viable way to counter the impact of imbalances

in the training data.

Lee et al.[100] incorporated transfer learning into under-sampling method to clas-
sify highly-imbalanced data sets of plankton classification on WHOI-Plankton
dataset [101]. The data set contains 3.4 million images of over 103 classes where
90% of the images comprised of just five classes (the 5th largest class makes up
just 1.3% of the entire data set and with many classes make up less than 0.1%
of the data set). Their approach contains two-phase learning procedure: In the
first phase, a deep CNN is pre-trained with thresholded data. The thresholded
data sets for pre-training are constructed by randomly under-sampling large
classes until they reach a threshold of N examples. In the experimental results,
the threshold is chosen as 5000 through preliminary experiments, then all large
classes are down-sampled to N samples. In the second phase, the pre-trained
model is fine-tuned using all data. Instead of completely removing potentially
useful information from the training set as in naive under-sampling approach,
the two-phase learning procedure only eliminates samples from the majority
group during the pre-training phase. This allows the model to see all of the
available data during the fine-tuning phase while helping the minority group to
contribute more to the gradient during pre-training. In this work, they conducted
the comparison on six methods which are combined with transfer learning and

augmentation techniques. The imperial results have shown that under-sampling
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aims at increasing the minority class performance while still preserving the ma-

jority class performance.

Instead of under-sampling over-sampling, Pouyanfar et al. [102] proposed a
dynamic sampling technique in order to perform classification task on imbal-
anced image data. Their approach is to combine both over-sampling and under-
sampling strategies which is to over-sample the low performing classes and under-
sample the high performing classes. Their approach contains three core compo-
nents: real time data augmentation, transfer learning, and a novel dynamic sam-
pling method. The first method, various transformations are applied to select
images in each training batch, where Inception-V3 network [103] is used to fined-
tune the network which as pre-trained on ImageNet [104] the second method.
The third method, dynamic sampling, which is able to self adjust sampling rates,

is the main contribution to solve the class imbalance problem.

Recently, Buda et al [105] investigate the effects of class imbalance on classifica-
tion of different deep learning frameworks under different data-level approaches,
namely, over-sampling, under-sampling, two-phase training, and thresholding.
Three popular datasets, namely, MNIST[106], CIFAR-10, and ImageNet to-
gether different CNN architectures were empirically selected. A improved version
of the LeNet-5 [99] and the All-CNN [107] architectures were used as network
backbone. From the empirical results, they have conducted that (i) The effect
of class imbalanced data on classification performance is detrimental.; (ii) The
impact of class imbalance on classification performance increases with the scale
of a task.(iii)The influence of class imbalance not only depends on the by the
lower total number of training cases but also the sample distribution among
classes. In oder to decide which method is used to handle the class imbalanced
data problem during deep neural network training, Buda et al suggested (i)
Oversampling is the one that outperforms all others with respect to multi-class.

(ii) Undersampling is the appropriate method in the case where extreme ratio
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Figure 3.5: Summary of deep learning architectures to class imbalance problem

of imbalance and large portion of classes being minority. (iii) Undersampling is
the choice training time is an issue. (iv) Ti achieve better accuracy, thresholding

should be applied to compensate for prior class probabilities.

3.4.2 Algorithm level methods

In the context of deep feature representation learning using CNNs, data-level
methods may either (i) introduce large amounts of duplicated samples, which
slows down the training process and face to over-fitting problem when perform-
ing over- sampling, or (ii) discard valuable examples that are important for
discriminating when performing under-sampling. Due to these disadvantages of

applying under or over sampling for CNN training, the algorith,-level methods

47



focuses on how to design a better class-balanced loss. Far apart from the pre-
vious data-level methods which focus on changing data distribution, algorithm
level methods focus on modifying deep learning algorithms. Wang et al. [108]
proposed the loss function called mean false error together with its improved
version mean squared false error for the training of deep networks on imbal-
anced data sets. To conduct the experiments, there are eight imbalanced binary
datasets, including three image datasets and five text datasets collected. From
the empirical results, the authors have shown that the mean squared error (MSE)
loss function poorly captures the errors from the minority group in cases of high
class imbalance, due to many negative samples dominating the loss function.
They then proposed loss functions mean false error (MFE) and its improvement
mean squared false error (MSFE) which outperform MSE loss in almost all cases
and have prove to be able to handle the errors from the minority class. To effec-
tively address the extreme foreground-background class imbalance encountered
during training of dense detectors, Lin, et al.[109] proposed focal loss function
which reshapes the cross entropy loss such that it low weights the loss assigned
to well-classified examples. RetinaNet is a one-stage focal loss model which is
evaluated against several state-of-the-art one-stage and two-stage detectors. In
general, RetinaNet model one backbone which is responsible to produce feature
maps from the input image, and the two subnetworks which are responsible to
object classification and bounding box regression. The authors chose feature
pyramid network (FPN) built on top of the ResNet [110] architecture as back-
bone model and it is pre-trained on ImageNet [99]. RetinaNet is trained on both
standard cross entropy loss and the proposed focal loss. The experiments have
shown that using standard cross entropy loss quickly fails and diverges due to the
extreme imbalance whereas the proposed focal loss is able to outperform exist-
ing one-stage and two-stage object detection approaches. Focal loss is then used

by Nemoto et al [111] for image classification task. The authors have concluded
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that focal loss improves problems related to class imbalance and over-fitting by
adjusting the per-class learning speed. In order jointly learns network weight
parameters and class misclassification costs during training, Khan et al. [18] in-
troduced an effective cost-sensitive deep learning (CoSen CNN) procedure which
has been evaluated on six multi-class data sets. The VGG-16 [112] is used as
baseline throughout the experiments. The feature map from VGG-16 is then
modified by the cost matrix that is learned by the CoSen CNN which helps to
give higher importance to samples with higher cost. The proposed cost is then
incorporated into Mean Squared Error loss, Support Vector Machine hinge loss,
and Cross Entropy loss. From the experiments, it is shown that the baseline
CNN, with no class imbalance modifications, is a close runner-up to the CoSen
CNN, outperforming the sampling methods, It is interesting that the baseline
CNN, with no class imbalance modifications, is a close runner-up to the CoSen
CNN, outperforming the sampling methods, Random Forest classifiers in all
cases., and RF classifiers in all cases. Cost-sensitive in deep learning framework
is continuelly studied by Zhang et al. [113]. In order to improve the cost matrix
and incorporate these learned costs into a deep framework, Zong et al. use a
differential evolutionary algorithm. Their proposed cost-sensitive learning ap-
proach, CSDBN-DE, has been evaluated against 42 datasets. In their proposed
network, the cost matrix is incorporated into the output layer’s softmax. Cost
matrices are first randomly initialized and then updated by mutation and cross-
over operations during the training phase. Usually, the class imbalance problem
has been evaluated on a small dataset and reach up to CIFAR-10. Zhang et
al [114], bought the problem up to larger dataset on CIFAR-100 dataset. They
proposed category centers which a combination of transfer learning, deep CNN
feature extraction, and a nearest neighbor discriminator to address the class
imbalance problem. The proposed approach is based on the observations that

(i) the decision boundary made by the final layer of the CNN.(ii) similar im-
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ages of the same class tend to cluster well in CNN deep feature space. Thus,
they suggest to use high-level features extracted by the CNN to compute the
class’s centroid in deep feature space. The proposed category center helps to
improve the classification performance on CIAFAR-10 but not on CIFAR-100.
The proposed method is mainly depends on the category center, the classifica-
tion boundaries may not be strong enough if the annotated training data is not
available to pre-train the network. Focus on the facial action recognition, Ding
et al. [115] experimented with very-deep network architectures to determine if
deeper networks perform better on imbalanced data. They observe that a larger
network contains more local minimum and produce better performance than a
smaller network. One of the special case of imbalanced data, called long- tail: a
few dominant classes claim most of the examples, while most of the other classes
are represented by relatively few examples has been studied in Yin et al.[116]. In
this work, they study the effective number of samples and show how to design a
class-balanced term to deal with long-tailed training data. From the experiments,
they show that adding the proposed class-balanced term to existing commonly
used loss functions including softmax cross-entropy, sigmoid cross-entropy and
focal loss helps to improve the performance. By considering minority samples as
hard samples, Dong et al. [117] proposed Class Rectification Loss to avoid the
dominant effect of majority classes by discovering sparsely sampled boundaries
of minority classes. Their proposed method is based on batch-wise incremental
hard mining of hard-positives and hard-negatives from minority attribute classes
alone. Different from most of the other works that work on global clustering of
the entire training data, Class Rectification Loss is independent to the over-
all training data size, therefore very scalable to large scale training data. They
conducted the experiments two large scale datasets CelebA [118] and and X-
Domain [119] and they conducted the comparisons against 11 different models.

Not only in deep learning, the problem of class imbalance is also studied in deep
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reinforcement learning by formulating the classification problem as a sequential
decision-making process and solve it by deep QQ-learning network as proposed in
[120]. In their approach, the agent performs a classification action on one sample
at each time step, and the environment evaluates the classification action and
returns a reward to the agent. The reward from minority class sample is larger
so the agent is more sensitive to the minority class. The agent finally finds an
optimal classification policy in imbalanced data under the guidance of specific

reward function and beneficial learning environment.

3.4.3 Hybrid-level Methods

In order to learn more discriminative deep representations of imbalanced im-
age data, Huang et al. [121] proposed Large Margin Local Embedding method.
The proposed methods is based on observation that the minority groups are
sparse and typically contain high variability, allowing the local neighborhood of
these minority samples to be easily invaded by samples of another class. Their
method to enforce the local cluster structure of per class distribution in the deep
learning process so that minority classes can better maintain their own struc-
tures in the feature space. In their approach, the CNN is trained with instances
selected through a new quintuplet sampling scheme and the associated triple-
header hinge loss. However, their proposed method has a number of fundamental
drawbacks including disjoint feature, quintuplet construction updates and clas-
sification optimisation. Ando et al. [122] introduced Deep over-sampling which
incorporates over-sampling into the deep feature space produced by CNNs. Their
proposed method contains two simultaneous learning procedures: optimizing the
lower layer for acquiring the embedding function and upper layer parameters to
discriminate between classes using the generated embeddings. Their proposed
approach address the effect of class imbalance on both classifier and representa-

tion learning by introducing a general re-sampling framework to learn the deep
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representation and the classifier jointly in a class-imbalanced setting without
substantial modification on its architecture. In this method, the training data
is first augmented by assigning multiple synthetic targets to one input sample.
Then, process of learning the CNN and updating the targets with the acquired

representation enhances the discriminative power of the deep feature.

3.5 Loss function

To train a Deep Neural Network (DNN), the loss function, which is known as
cost function, plays a significant role. Loss function is to measure the average
(expected) divergence between the output of the network (P) and the actual
function (T') being approximated, over the entire domain of the input, sized
m x n. We denote i as index of each pixel in an image spatial space N = m x n.
The label of each class is written as ¢ in C classes. Herein, we briefly review the

some common loss functions.

3.5.1 Cross Entropy (CE) Loss

Cross Entropy loss is a widely used pixel-wise distance to evaluate the perfor-
mance of classification or segmentation model. In CE loss function, the output
from softmax layer (P) is classified and evaluated against the groundtruth (7).
For binary segmentation, CE loss is expressed as Binary-CE (CE) loss function

as follows:

N
Lop =— Z [T; In(P, —T;)In(1 — P)] (3.2)

The standard CE loss has well-known drawbacks in the context of highly un-
balanced problems. It achieves good performance on a large training set with
balanced classes. For unbalanced data, it however typically results in unstable
training and leads to decision boundaries biased towards the majority classes.

To deal with the imbalanced-data problem, two variants of the standard CE loss,
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Weighted CE (WCE) loss and Balanced CE (BCE) loss are proposed to assign

weights to the different classes.

In medical image segmentation, a common strategy is re-balancing class prior
distributions by down-sampling frequent labels [123]. However, this strategy ig-
nore some useful information during training. To deal with the imbalanced-data
problem, two variants of the standard CE loss, Weighted CE (WCE) loss and
Balanced CE (BCE) loss are proposed to assign weights to the different classes.
WCE, BCE losses assign more importance to the rare labels and defined as
WCE(T,P) = —& S [BTiIn(B;) +7(1 — T;) In(1 — B;)], where 8 > 1 is to de-
crease the number of false negatives and where § < 1 is to decrease the number

of false positives. In WCE loss, v = 1 whereas v =1 — § in BCE.

3.5.2 Dice loss

Dice loss is proposed by [11]. It measures the degree of overlapping between the
reference and segmentation. Dice loss comes from Dice score which was used to

evaluate the segmentation performance. In general, it is defined as follows:

N
. T;P;
Y _,InP

Lpice = 1 -

(3.3)
Even though Dice loss has been successful in image segmentation, it is still pixel-
wise loss and has similar limitations as CE loss. Despite Dice loss improvements
over CE loss, Dice loss may undergo difficulties when dealing with very small
structures [124] and weak object boundary as missclassifying a few pixels can

lead to a large decrease of the coefficient.
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3.5.3 Focal Loss

Focal Loss is proposed by [12], Focal loss is a modified version of CE loss. It is

to balance between easy and hard samples as follows:

N
2 (= PYTn(R) + PY(1 = T;) In(1 - B)) (3.4)
=1

=&

£Focal =

In Focal loss, the loss for confidently correctly classified labels is scaled down,
so that the network focuses more on incorrect and low confidence labels than on
increasing its confidence in the already correct labels. The loss focuses more on

less accurate labels than the logarithmic loss when v > 1.
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CHAPTER 4
METHOD

Medical image segmentation is one of the most challenging tasks in medical im-
age analysis and widely developed for many clinical applications. Although deep
learning-based approaches have achieved impressive performances in semantic
segmentation, their limitations on pixel-wise are extant with imbalanced-class
data problems and weak boundary object segmentation in medical im-
ages as well as less annotation data. Therefore in order to tackle the weak
boundary object problem in medical imaging segmentation we propose the active
contour model that focus on the boundary/surface. To address the aforemen-
tioned imbalanced-class data problems, our network inherits the advantages of
narrow band theory under the zero level set energy minimization. As for the
last problem of less annotation data, GAN is employed as a model which helps
with data augmentation by transferring images from one domain to another do-
main. To begin with, we also conduct a motivating experiment in section 5.2 to
check whether active contour has a promising result on our considered medical

datasets, firstly as a post-processing method on previously trained Unet (guided

with GAN).

4.1 Motivation

Considering problems related to boundary in image segmentation, boundary
refining methods have always been the well-known solutions. As for medical
image segmentation, in general, active contour approaches have been shown to
be effective. This motivated us to experiment some of these methods (the active-
contour-based methods) to scrutinize their efficiency on our collected medical
images. Our collected medical images are 3D images, which allowed us to use

them as either 3D inputs or slicing them as 2D inputs.
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We trained a 2D deep snake model [125] on the training set of iSeg 2019 dataset
and tested with its test set. Via this experiment, this deep snake model has
successfully detected the target regions of different brain tissues; but for the
segmented boundaries, the outputs are smooth and loosely snapped to the target
boundaries. This is why we decided to move to older snake versions, which are
expected to provide us better customization on the energy extracted from a

given image and a mask.

Originally, the active contour or level set based methods aim to solve the energy
minimization equation (section 3.3) to refine the boundary from a single-label
initial boundary and a single input image. This experiment is based on
Chanvese 3.3 method using the result of the Cycle GAN Segmentation (section
4.3.1, 5.3.3) model to extract the initial boundary for each labels. For post-
processing using active contour based on Chanvese, we tried several approaches

for several problems.

Firstly, for multi-modality input, we decided to use the difference in inten-
sities of the two T1- and T2- weighted as the input for the Chanvese model
(refer to 2 for reasons), as T1-w and T2-w mostly have flipped contrasts (table
2.1). We also tried using concatenation of the two images, the intensity sum of
the two images, and resulted in lower segmentation accuracy. The difference in
intensities of T1- and T2- weighted, however, cannot successfully represent the
information from both these images so that we do not expect the active contour
post-processing method to improve the result much. This also motivates us to
move further to the later approach, the Narrow Band - Active Contour loss.
Briefly understanding, Unet can be considered as a feature extractor to obtain a
better representative features for the two inputted images T'1- and T2- weighted
to successfully calculate the energy of the given "images" and the given con-
tour (from ground truth for the training dataset), with the hope of this energy

function will guide the Unet model to "extract" the image so that the actual
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boundary regions seems to be boundaries viewing through the active contour

model.

Secondly, for multi-label segmentation problem, especially for this brain tissues
segmentation problems as active contour based methods are often known to be
sensitive to large noise regions. Hence, the first step is to reduce the affect of the
“noises" (in calculating the energy functions), especially the black background in
each slides. As the black background regions is relatively large in comparison to
considered parts of our segmented tissues, and especially have higher intensity
contrast with the considered tissues (intensities contrast between regions are not
as large), keeping this region means adding a force to move the initial boundaries
to the background-foreground brain region (where we can understand as skull

regions).

Experiments shown that for brain MRI images (iSeg in this case), the tissue re-
gions intensity contrast are not high enough for remarkably moving the bound-
aries toward the target gradient regions. Please note that the T1-weighted mi-
nus T2-weighted does not expected to highly represent the two inputted images
and that the initial boundary is extracted from a high result model which also
expected not to be changed much, except for the mis-segmented regions. An
example for the low intensity contrast between tissues (on the originally low
contrast 6-month MRI brain images): the initially segmented white tissues, the
inside region intensities does not seem to be much different from the outside
region intensities (after removing the background). This is the reason why we
later choose narrow band instead of using the whole inside and outside regions

to calculate the energy.

As this is brain tissues segmentation, the available regions between tissues are
not expected to exist, in other words, no holes between regions as well as no

overlapping regions. Hence, we also added another constraint for the above post-
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processing method, which is the constraint for boundary movement not to move

too much into other tissues (in comparison to the initial segmented masks).

In brief, because this is used as a post-processing techniques, we decided to
use the output from previous method based on cycle GAN segmentation as the
initial boundaries. This initial masks have already acquire an acceptable result,
considering DSC; So we would like to restrict the evolution process of this post-
process method to be evolve only in some regions. The regions is defined by
the initial masks. For more details, please visit section 5.3.1. Given the result
obtained by this post-processing experiment, we attempted to build an end-to-

end model as in section 4.2.

4.2 Proposed Active Contour Unet

Our proposed Active Contour Unet (AC-Unet) is motivated by the minimization
problem of CV’s model [13] to efficiently find a contour by minimizing an energy
functional. To address the limitations of CV’s model, we conduct an attention
model to focus on parallel curves of the contour. In the following equations,
ground truth and predicted output are denoted as T and P, where T,P €
[0, 1]>*W and H and W are the height and weight of T. Our proposed network
loss contains three branch corresponding to higher-level feature , intermediate-
level feature and lower-level feature loss as follows. Fig.4.2 shows our proposed
segmentation network architecture. Our proposed Active Contour Unet is based

on offset curves thoery as follows:

4.2.1 Offset Curves Analysis

The theoretical background of offset curves is based on the theory of parallel
curves and surfaces [126, 127]. An illustration of offset curve theory is given in

Fig. 5.1. In Fig.5.1(A), the curve I, where T' : Q@ — R? is called a parallel curve of
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'8 (either outer curve I'*5 or inner curve I'-5) if its position vector ¢ satisfies:
B(2) = e(2) + Bn(z) (4.1)

where z — ¢(z) = [x(2),y(2)],  and y are continuously differentiable with respect
to parameter z and Q2 € [0, 1]. B is the amount of translation, and n in the inward
unit normal of I". Based on this equation, the inner band B~ and outer band
B* are bounded by parallel curves I'*2 and I'"8. This implies that both curves
are continuously differentiable and do not exhibit singularities. Fig.5.1(B) shows
a case where band width (translation) Bj is smaller than the curve’s radius of
curvature whereas Bs is larger than the curve’s radius of curvature. An important
property resulting from the definition of the Eq.4.1 is that the velocity vector of
parallel curves depends on the curvature of I'. That means, the velocity vector of
curve I'B is expressed as a function of the velocity vector, curvature and normal

of I'. Set n(z) = —ac(z), we have

B(2) = e(2) + Bn(z) = (1 — aB)c(z) (4.2)
That equation provides the length element of inner parallel curve:

I8 = [|B(2)]| = 1B(1 - aB) (4.3)

This is also a result in parallel curve theory in [128]. Because the length 7 is
also positive, the band width should not exceed the radius of curvature it is
expressed as %1 <a< %. Is this constraint satisfies, the curves I'*8 and I' "8 are

simple and regular.
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C+s C-s
(a) Ilustration of inner band B;, and
outer band B,y of a contour(C)

(b) Main curve C (black) and two
parallel curves: blue curve Cpy is
generated by a small bandwidth of
translation; red curve Cpy is generated
by larger bandwidth of translation.

Figure 4.1: Demonstration of offset curve theory

4.2.2 Higher Level Feature Branch

The first branch of the network is a standard segmentation CNN which can
utilize any encoder-decoder network such as Unet [7], FCN [55]. Unet [7] has been

widely as end-to-end and encoder-decoder framework for semantic segmentation
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NB-AC Attention Model

Skip connection Contour Narrow band

L, :Region Loss  L£,: Contour Length Loss Lz : Narrow Band
Active Contour Loss

Figure 4.2: Proposed Active Contour Unet architecture

with high precise results. One of the most important building blocks is skipped
connections which are designed for forwarding feature maps from down-sampling
path to the up-sampling path in order to localize high resolution features. Fully
convolutional networks (FCN) [55] also consists of two paths: down-sampling and
up-sampling paths. The down-sampling path aims to increase the receptive-field
via convolution and pooling layers. In the up-sampling path, the intermediate
features are up-sampled to the input resolution by bi-linear operators. Both
Unet and FCN network architectures are chosen as the network backbones in

our experiments. More formally, for a region segmentation of K classes, the first
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branch outputs the categorical distribution and the loss is computed as:

K
Ly == yslogps (4.4)
c=1

where 3¢ is binary indicator (0 or 1) if class label ¢’ is the correct classification

for observation ‘o’ and p¢ is predicted probability observation 'o’ is of class ’c’.

4.2.3 Transitional Gate

In semantic segmentation, both object region and object contour are closely
related, thus, we present a transitional gate that aims at transferring information
from the first branch to the second branch. The transitional gate acts as a filter
that focuses on extracting lower level feature and removing irrelevant information
from higher level feature. Let denote the output feature representation of the first
branch as Fy. The output from NB-AC attention model in the second branch
is denoted as FEC and Fév corresponding to contour feature map and narrow
band feature map. The contour feature map Fg is obtained by applying edge
extraction operator xy on the higher level feature map Fj and the narrow band
feature map FY is obtained by applying parallel curves operator ¢ on FEC In
our experiments, xy and ¢ are chosen as the gradient operator and the dilation
operator, respectively. Our NB-AC loss is flexibly incorporated into both 2D and
3D frameworks. In 2D frameworks, the gradient operator () is defined as either
3 x 3 convolutional layer and dilation operator (¢) is defined as B x B where B
is the width of narrow band. In 3D frameworks, the gradient operator (y) is
defined as either 3 x 3 x 3 convolutional layer and dilation operator (¢) is defined

as B x B x B where B is the width of narrow band.

Fg = x(Fy) and FY = ¢(Ff) (4.5)
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4.2.4 Lower Level Feature Branch

Our proposed NB-AC attention model in the second branch is motivated by
the minimization problem of CV’s model [13]. CV’s model is to efficiently find
a boundary (object contour) by automatically partitioning an image into two
regions based on global minimizing active contour energy. The level set function
® splits the image domain 2 into an inner region 2y = ® > 0, an outer region
Qo = ® < 0 and on the contour & = 0. However, CV’s model makes strong
assumptions on the intensity distributions and homogeneity criterion, which are
usually expressed over regions inside and outside of the contour. Instead of deal-
ing with the entire domains 2 defined by the evolving curve, we only consider
the narrow band By, | Bout | JC which is formed by the inner band domain B;,,
outer band domain B,,; from two sides of the curve C and the curve C itself
(note: C is presented by ® = 0), as depicted in Fig.4.1. Our NB-AC loss of the
second branch is defined in Eq.4.6:

Lo :,u/ | Length(®)|dzxdy

L3 =)\ /
B

where the first term defines smoothness which is equivalent to the length of the

(4.6)

|p - bm|2d$d?/ + )\2/6 |p - bout|2d$dy

contour, the second term defines the inner band energy, the last term defines
outer band energy. p is the predicted feature map. By applying the transitional

gate (Sec.4.2.3), we can rewrite Eq.4.6 in term of domain Q as follows:

L= [ |FE (e, y)ldody
Q (4.7)

@:m/mwwwwwwhﬁw@+&/mmw@@m—mﬁmw
9] (9]
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where b;, and b, are intensity descriptors of B;, and B, respectively.

- Jopla,y)FE, (z,y)dwdy
o FY (z,y)dzdy
Jop(z,y)(1 = F (2,y))ddy
Jo(1— F¢ (. y))dwdy

(4.8)

bout -

where Fé’x is the narrow band of the groundtruth y and is computed by first
applying the gradient operator () to extract the gradient and then applying a
dilation operator ¢ to get the narrow band, namely, Fny = ((x(v))-

Our proposed NB-AC loss archives good flexibility thanks to the narrow band
principle which does not carry a strict homogeneity condition. The theory of our
proposed NB-AC attention model comes from the parallel curve also known as
"offset curves" [126]. As given in Fig.4.1, the curve Cp; or Cps (Cp in general) is

called a parallel curve of C if its position vector Zp satisfies:

C:Q—R?

2= I(2) = [a(2), y(2) (4.9)

Ip(z) = Z(z) + Bn(z)
where z and y are continuously differentiable with respect to parameter z and
Q € [0,1]. B is the amount of translation, and » in the inward unit normal of C.
An important property resulting from the definition of Eq.4.9 is that the velocity
vector of parallel curves depends on the curvature of C. That means, the velocity

vector of curve Cp is expressed as a function of the velocity vector of C and its

curvature and normal. Set n(z) = —kZ(z), we have:

Ip(z) =Z(z) + Bn(z) = (1 — kB)Z(z) (4.10)

Apply Eq.4.10 to the curves in Fig.4.1, we obtain the length element (or velocity)
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of outer parallel curve C,g: l4 5 = ||Z+Bn(2)||, the length element of inner parallel
curve C_g: l_p = ||Z—Bn(z)||. Based on the above offset curve theory, the inner
band B;, and outer band By, (in Fig.4.1) are bounded by parallel curves C_p

and C+B .

In our proposed network architecture, the second branch focuses on only the
information around the contour and on the contour itself, i.e. Bi, | Bout | JC as in
Fig.4.1. This aims at addressing not only the problem of weak boundary object
segmentation but also the imbalanced data problem. In image segmentation,
each pixel is considered as a data sample and needs to be classified. The second
branch can be seen as an under-sampling approach where all data samples inside
the C_p and outside of +B (i.e. not in the narrow band) are ignored and only
data samples between the narrow band formed by Bj, | Bout | JC are kept for
predicting. One can think contour C plays the role of hyperplane and all data
samples inside narrow band play the role of support vectors which influence the

position and orientation of the hyperplane.

4.2.5 Network Architecture

The architecture of our proposed two-branch network is illustrated in Fig.4.2
where we choose Unet framework for this demonstration. The first branch is de-
signed as a standard encoder-decoder segmentation network. The second branch
is composed of residual blocks interleaved with transitional gates (in subsec.4.2.3)
which ensures that the second branch only processes boundary-relevant infor-
mation (edge and narrow band). Our proposed network is designed as an end-

to-end framework. The losses from both branches are combined as:

Lyp-ac =L +72L2 +73L3 (4.11)
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where v; and ~9, and 73 are three hyper-parameters that control the weight-
ing between the losses and chosen as v = 0.6, 79 = 0.2 and 73 = 0.2 in our

experiments.

In this work, we use 2D Unet [7] and 2D FCN [55] architectures as our base
segmentation frameworks to evaluate our proposed NB-AC loss function perfor-
mance in the case of 2D input. Furthermore, we use 3D Unet [8] to evaluate the
propoed NB-AC loss function in the case of 3D input. In Unet, feature maps
from down-sampling path is forwarded to the up-sampling path by skip connec-
tions. Each layer in the down-sampling path consists of two 3 x 3 convolution
layers (3 x 3 x 3 in 3D Unet), one batch normalization (BN), one rectified linear
unit (ReLU) and one max pooling layer. In the up-sampling path, bilinear inter-
polation is used to up-sample the feature maps. In FCN framework, we choose
FCN-32 which produces the segmentation map from convl, conv3, conv7 by us-
ing a bilinear interpolation. At the down-sampling path, each layer in FCN is

designed as same as layer in 2D Unet.

4.3 Active Contour Unet with Guided Segmentation

To improve the segmentation result in less annotation data, we also experiment
transferring the knowledge obtained by the Cycle GAN guided segmentation
model proposed in [6] to a Unet model trained with our proposed loss. Firstly,
we trained two independent Unet models separately and respectively on two
datasets (6m infant brain and 24m brain images). Then we freeze these two
models and train the Cycle GAN segmentation model detailed below in section
4.3.1. Later, we use our trained Unet model with our proposed Narrow Band -
Active Contour loss on 3D 6m-infant-brain dataset to learn the knowledge the
Cycle GAN segmentation model transferred from 24m-brain to 6m. The result of

this method (the Active Contour guided by GAN) is presented in section 5.3.2.
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4.3.1 Cycle GAN segmentation

This model, proposed by Toan Duc Bui et al. [6], aims to transfer the 3D 24-
month brain images to 6-month brain images which share the same tissues-

segmentation result. The figure 4.3 below shows the overview of this method.

/ Image eai.6m Generatorg._s,, IMageg nenesis-24m Discriminator,,,

"ZGAN ‘chcle R l’CE ‘lcvcle AGAN
24m
I | /. Freeze network
Discriminatorg, IMage, ninesis-om +—RCLEUEICL TN Image,cai2am - Learhable network

Figure 4.3: Cycle GAN guided segmentation [6]

The first step is to train U-net segmentation for infant and adult brain data
independently, respectively called Sx and Sy for distinguishment. The idea
of using (previously-and-independently trained) U-net here is to ensure that
the segmentation image of the synthetic images transferred by CycleGAN is
estimatedly the same as its origin’s, comparing via cross-entropy (CE) loss. As
shown in figure 4.3, the real 6-month image will get through the 3D Cycle GAN

Segmentation model to generate a synthetic 24-month image and vice versa.

For specific, scrutinizing figure 4.3, the orange line (or similarly, the purple one):
real 6-month images will be used to generate synthetic 24-month images. The
24-month discriminator of the the Cycle GAN will judge whether the fabricated
images is real or not. Simultaneously, each pair of the original-and-unnatural
will get through the Unet models to produce the segmentation results and these
two will be compared with segmentation loss ( Sy and Sy respectively output
maskyx and masky and CE loss will be calculated from these two). In figure

4.3, the orange line, together with the purple line, yields the basic flows of the
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3D-CycleGAN-Seg.

Objective function. As mentioned above, the proposed model is generally
based on multiple different constraint such as cycle-consistency for segmented
features, discriminator loss for generated images, and feature matching loss for
image quality enhancement. Considering all the loss functions above to update
weights while training the Cycle GAN Segmentation network gives us a final

objective function.

Cycle GAN loss. To transfer the appearance between two times-points of un-
paired set X, Y which X is 6-month phase and Y is 24-month phase. The authors
use the Cycle GAN network to guide the segmentation. The architecture of Cy-
cle GAN contains two generators and G = {Gx, Gy} and two discriminators
D = {Dx, Dy}. The generator generates new image Gy from Gx in particu-
lar it transfers the image appearance from 6-month time-point to the 24-month
time-point Y. The discriminator D has the same function with GAN which is

providing the feedback for generator to generate more real images.

Leycrecan(Gx, Gy, Dx, Dy) = Laan(Gy, Dx)
+ Laan(Gy, Dy)
(4.12)
+ )\‘Ccycle(GX> GY)

+ BLidentity(Gx, Gy)

With Lgan is the GAN loss (for D networks), L. is the cycle-consistency
loss so as to ensure that Gx(Gy(z)) = z. And the Ligentity (from Cycle GAN)
[16] is to guide the generator in mapping synthesis images domain to the target

one faster, with \ & (8 as parameters.
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Lidentity(Ga F) = Eprdata(y)[

Py | (413)

‘G(y) - yHl] + E-T’\’pdata(x)[ 1

Segmentation loss. At each time-point, there is a ground-truth label for every
sample. The authors propose a 3D Cycle GAN Segmentation network by adding
two segmentation networks Sx,Sy that use ground-truth label to train the
segmentation network Sy, Sy using 3D-Dense-Unet architecture. Pre-tranied
weight of the segmentation networks is used to produce the segmentation features
of real images to help the generator networks G to generate images that have
similar segmentation features to real images. In particular from one sample in
6-month time-point, the network generates another sample that similar to 24-
month time-point form and provides the synthetic segmentation result from
segmentation networks Sy which trained on images from domain Y. The network
compares that result to the one from segmentation network Sy, which trained
on images from domain X to produce cycle loss. The segmentation loss Lge,
encourages the synthetic images distribution to move towards distribution of

the search space with smallest cross-entropy loss.

C
Loeg(Gx, Gy, Sx,Sy) = Y _T(Sk(x)) log(Sy(Gx(x)))
Z’;l (4.14)
+ Y T(Sy(y)) log(Sk (Gy (1))

=1

Dense loss (Feature matching loss). For further improvement in the image qual-
ity, the authors propose contextual loss to measure cosine distance between two

segmentation features of real and fake images that extracted from segmentation
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networks Sx and Sy.

m

Li(Gx, Gy, Sx,Sy) = Y (Lox(fs, (@), f5, (Gx(x))
l=n (415)

+ Lox (£, ), f5, (Gy ()

Objective function. Combining all the loss functions above, the objective function

for this model is defined as:

LeyeieGAN Seq(Gx,Gy,Dx,Dy,Sx,Sy) = Leyaeaan(Gx, Gy, Dx, Dy)
+YLseg(Gx, Gy, Sx, Sy) (4.16)

+&L4(Gx, Gy, Sx, Sy)

Which is to add up the Cycle GAN loss, segmentation and feature mapping loss,

with v & £ as parameters.

Guided segmentation. After training the 3D Cycle GAN Segmentation net-
work, the pretrained model is then used to retrain the 3D dense Unet network
for segmentation of the infant brains. The objective function (joint segmentation
loss) for the 3D dense Unet network is updated to be the sum of the loss for the
segmentation of both the natural and unnatural (generated from the pretrained

3D Cycle GANSegmentaiton) images:

C
»Cseg_join(SX) = Z LfX 10g<5}<(l‘))
=1

C

+ ) L log(Sk (Gy ()
=1

(4.17)

Evaluation metrics. The proposed method originally uses Dice Similarity Co-

efficient (DSC) metric for evaluation. The DSC metric is similar to the idea of

70



F' score, defined as:

2-|AN B
2-|ANB|+ |B\A| + |A\B|

Dice score =

(4.18)

To an extent, the authors’ work offers an approach using data from one time-
point to correct the segmentation errors of another without the need of paired
data. Which is to use the Unet added into cycle GAN for Cycle GAN Segmen-
tation network. And then leverage this model to correct the segmentation fault

by retraining and modifying the loss function of the 3D dense Unet network.
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CHAPTER 5
EXPERIMENT

For the experiment, we start discussing the collected datasets, then our moti-
vation experiment using active contour post-processing on previously trained
Unet model detailed in section 5.3.3. Later, we describe our proposed approach,
the Narrow Band - Active Contour loss experimented with different networks
as in section 5.3. For the result from the experiments, section 5.3.1 noted down
both the qualitative and quantitative comparison of this loss function used with
different networks as well as another experiment using this proposed loss in com-
bination with 3D Unet guided with GAN (from the Cycle GAN Segmentation

model).

5.1 Dataset

We use four common medical datasets including 2D and 3D images in our ex-

periments as follows:

iSeg: The iSegl9 dataset [129] consists of 10 subjects with ground-truth labels
for training and 13 subjects without ground-truth labels for testing. Each subject
includes T1 and T2 images with size of 144 x 192 x 256, and image resolution of

1 x 1 x 1 mm?. In iSeg, there are three classes: white matter (WM), gray matter

(GM), and cerebrospinal fluid (CSF).

MRBrainS: The MRBrainS13 dataset contains 6 subjects for training and val-
idation and 15 subjects for testing. The MRBrainS18 dataset [130] contains 7
subjects for training and validation and 23 subjects for testing. For each subject,
three modalities are available that includes T1-weighted, T1-weighted inversion
recovery and T2-FLAIR with image size of 48 x 240 x 240. Each subject was

manually segmented into either 3 or 8 classes by the challenge organizers.
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Brats: The Brats18 database [131] contains 210 HGG scans and 75 LGG scans.

For each scan, there are 4 available modalities, i.e., T1, T1C, T2, and Flair.

FEach image is registered to a common space, sampled to an isotropic 1 x 1 x 1

mm3

resolution by the organizers and has a dimension of 240 x 240 x 155. In

Brats18, there are three tumor classes: whole tumor (WT), tumor core (TC)

and enhanced tumor (ET).

iSeg 2019

(a) class distribution of three
datasets (blue regions in the pi
are backgrounds)

Mean Std Median
cortical gray matter 021 004 021
basal ganglia 020 004 020
2 white matter 020 0.03 020
£ white matter lesions 029 0.06 028
a cerebrospinal fluid * 0.12  0.06  0.11
= ventricles 0.06 007 0.03
cerebellum 021 0.04 021
brainstem 020 004 020
o white matter 021 0.10 0.19
@ grey matter 030 0.10 0.26
cerebrospinal fluid 032 012 0.28
E whole tumor 051 0.16 0.52
= tumor core 051 015 0.0
 enhance tumor 049 0.14 049

*cerebrospinal fluid in the extracerebral space

Figure 5.1: Statistical information of medical images.
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Aforementioned in section 2.1.2, and in figure 5.2 and 5.1 respectively shows the
examples as well as the statistical information of these three datasets. Sharing
the same task of segmenting the target tissues for the given 3D subjects, Brats
and MRBrains, however, do not severely affected by the less annotation problem
as in iSeg. Hence, for this issue, we also leverage a subset of subjects from The
UNC/UMN Baby Connectome Project (BCP) to guide the segmentation 6 and
24 -moth datasets using cyclegan trained on BCP and iSeg 2019. The follows are
detailed description of iSeg and BCP dataset as we alloyed these two dataset with
different parameters, which also lead to a heavier problem of data pre-processing

and normalizing.

Baby Connectome Project (BCP) is an infant brain MRI segmentation dataset
which is used for studying abnormal early brain development, the dataset is
also utilized for Iseg-2019 Challenge in conjunction with MICCAI 2017 . BCP
comprises of infant brain MRI scans with their segmentation labels in 3 types:
white matter (WM), gray matter(GM), and cerebrospinal fluid (CSF). The MRI
scans is recorded based on standard critical periods in terms of studying both
normal and abnormal in early brain development of radiologists or doctors. In
the early stage of brain development , there are three importanat phases in
the first-year brain MRI, consisting of infantile phase (<= 5 months), isointense
phase (6-8 months) and early adult-like phase(>=9 months). Especially, 6-month
old and 24-month old record of infant brain images are two critical periods of
the problem we study. 6-month old infant brain has respectively low intensity
contrast between tissues in comparison to 24-month old, which motivates the use
of GAN to guide infant brain segmentation with adult brain dataset. The dataset
contains input subject as T1- and T2-weighted MR images of 10 infant subjects
in the training set( from ssubject-1 to subject-10). The manual segmentation

label for each subject is set as :

Thttp:/ /iseg2019.web.unc.edu/
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0: Background (everything outside the brain)
10: Cerebrospinal fluid (CSF)
150: Gray matter (GM)

250: White matter (WM)

In the test set, BCP contains T1- and T2- weighted MR images of 13 infant
subjects( from subject-11 to subject-23). Table 5.2 shows the analytical reports
of the two dataset we obtained. On the other hand, table 5.1 are parameters
for each of the dataset. This table also infers the need of preprocessing and

normalizing data.

Table 5.1: Dataset imaging parameters?

TR/TE Flip angle Resolution
Iseg T1-w | 1900/4.38 ms 7° Ix1x1 mm3

training ~ T2-w | 7380/119 ms  150° 1.25x1.25%1.95 mm3

T1l-w | 2400/2.24 ms 8° 0.8%0.8x0.8 mm3
BCP

T2-w | 3200/564 ms VAR 0.8x0.8x0.8 mm3
Stanford ~ T1-w | 7.6/2.9 ms 11° 0.94%0.94x0.80 mm3
University T2-w | 2502/91.4 ms 90° 1.00x1.00x0.80 mm3
Emory T1l-w | 2400/2.19 ms 8° Ix1x1 mm3
University T2-w | 3200/561 ms  120° 1x1x1 mm3

Zhttp://iseg2019.web.unc.edu/data/. sagittal: x plane, axial: z plane, coronal: y plane, VAR:
for variance
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Table 5.2: Dataset description

: : avg. avg. avg.
iseg 2019 | ##subjects  gtart slices  end slices  slices/subject total
train 10 92.40 192.40 101.00 1010
test 13 87.77 188.46 101.69 1322
23 89.78 19.17 101.39 2332
(a) iseg 2019
.. . avg. avg. avg.
mini-BCP  #subjects  gtart slices  end slices  slices /subject total
train 4 32.50 180.75 150.25 601
6m
test 2 30.50 183.50 154.00 308
train 4 23.0 187.25 165.25 661
24m
test 20 21.50 186.00 165.50 3310
30 23.77 185.30 162.67 4880

(b) a sub-dataset of BCP

Figure 5.3 shows an example of one slices from iSeg 2019 dataset. As noted in the

figure, respectively from the left to the right column are T1-w, T2-w and label

of this slide. More information about MRI subjects is noted in section 2.1.2.

2From iSeg 2019 [129]
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z plane

X plane

Figure 5.3: Dataset example from iSeg 2019 [129]. The columns are T'1-weighted,
T2-weighted, and label of the target tissues (from left to right). The rows are
the middle slide of a subject viewed in axial/z, sagittal/x, coronal/y plane. For
the label of the target tissues: the light gray part is white matter, gray part is
for grey matter and the dark grey part is for cerebrospinal fluid (the black part
is background).
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Figure 5.4: An example of the segmentation result predicted by our model

5.2 Motivation

In this part, we leverage the Cycle GAN Segmentation model to train the 6
and 24 -moth segmentation models (as later detailed in section 5.3.3). Later,
we experiment several post-processing using active contour methods to check
whether this active contour methods can be used for better medical images
segmentation boundaries, as well as whether we should move on to the next

part: wrap this active contour method into an end-to-end unet model.

To evaluate appearance transferring efficiency of the 24-month old synthetic
images to 6-month old synthetic images vice versa, we compare against state of
the art model U-net network for segmentation which were trained with the real-
6-month subjects. The result shows that our method has a better performance

on Dice Score Coefficient metric. In particular, our method achieves 92.506% on
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average with accuracy 94.76% on gray matter, 91.46% on white matter, 91.3% on
CSF, while state of the art model of 3D U-Net got 92.50% accuracy on average
which was tested on subject-9. Figure 5.4 shows an example of the segmentation

result predicted by our model.

Applying Chanvese method with narrow band for [-0.5, 0.5] signed distance map
from the inital boundary (retrieved from the previous training inference on Cycle
GAN Segmentation model) with an additional restriction that boundaries of a
segmented tissue should not move more than 0.5 x 5 signed distance map (in the

initial boundaries) into other tissues with different label.

Figure 5.5 shows the energy of an example subject (each label) before and af-
ter applying the active contour post-processing method. The dark regions and
the brighter regions respectively are the energy of the whole regions inside and
outside the segmented regions. Here, we only show the energy of the whole in-
side/outside regions instead of narrow band because our chosen narrow band
regions are only several pixels wide . The active contour methods strive to move
the initial contour to the lower or higher (depending on the sign of the weight of
line in equation 2.3 intensity fields of the image where the intensity gradient is
larger. The higher contrast between the two inside and outside regions as shown
in this figure fails for the higher DSC result (after post-processing) implies that

active contour methods might works on this dataset.

Please note that the contrast here might not change much because the initial
boundary was extracted from the Cycle Gan Segmentation model, which have
already achieve a high result so that the boundary of the object should not
change much, except for the regions those are mis-segmented via the above

model.
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5.3 The proposed approach (NB-AC loss)

In this section, we evaluate the proposed NB-AC loss with different network ar-
chitectures, such as, Unet [7], 3DUnet [8]. Our performance is compared against
other common loss functions i.e. Dice, CE, Focal on the baseline frameworks
Unet [7] and compared against other state-of-the-art networks on 3DUnet [8].

Figure 5.6 shows an example of the intermediate outputs of our NB-AC method.

Experiment setting. On 2D images, to train our NB-AC loss on 2D Unet
networks we define the input as N x C' x H x W, where N is the batch size,
C' is the number of input modalities and H,W are height, width of 2D image.
Corresponding to iSegl9, MRBrainS18 and Bratsl8, we choose the input as
4X2x224 %224, 4 x 3 x224 x 224 and 4 x 4 x 224 x 224, respectively. We employed
the Adam optimizer, with a learning rate of le-2 with weight decay le-4. On 3D
volumes, our 3D architecture is built upon 3D-Unet [8] and the input is defined
as N xCx HxW x D, where N is batch size, C is the number of input modalities
and H,W, D are height, width and depth of volume patch on sagittal, coronal,
and axial planes. Corresponding to Brats18, MRBrainS13 and iSeg19, we choose
the input as 1 x4 x 96 x 96 x 96, 1 x 3 x 96 x 96 x 48, and 2 x 2 x 96 x 96 x 96. We
implemented our network using PyTorch 1.3.0 and our model is trained until
convergence by using the ADAM optimizer. We employed the Adam optimizer,
with a learning rate of 2e-4. Our 3D Unet makes use of instance normalization
[132] and Leaky reLU. The experiments are conducted using an Intel CPU, and
RTX GPU.
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5.3.1 Results and Comparison

In the post-processing section, we only test on the iSeg 3D images (and for deep
snake we test on 2D slices iSeg). But for the Narrow Band - Active Contour loss,
we also check on the other two datasets (both 2D and 3D, for 2D models trained
on both FCN and Unet) as a further confirmation for the effectiveness of this

proposed loss.

For quantitative assessment of the segmentation, the proposed model is evalu-
ated on different metrics, e.g. Dice score (DSC), Intersection over Union (IoU),

Sensitivity (or Recall), Precision (Pre).

The performance of our proposed NB-AC loss is evaluated on both FCN [55]
and Unet [7] architectures for 2D input and 3DUnet [8] for 3D input. The com-
parisons between our proposed loss and other common loss functions: CE, Dice,
Focal on challenging datasets MRBrainS18, Bratsl8 and iSegl9 are given in
Tables 5.3. Most yellow-highlighted texts fall for Unet, which implies Unet is
generally better than FCN for these three datasets. This is why later in table
5.4 we only compare the 2D or 3D state-of-the-art methods against our proposed

losses on 2D or 3D Unet backbones.
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Table 5.3: Comparison between our proposed NB-AC loss against other losses

CE, Dice and Focal on MRBrainS18, BRATS 2018, iSeg 2019 dataset

Losses DSC IoU Pre Rec

CE 83.26 7469 850  86.4

ey _Dice 82.0 73.23  82.67  85.89

% Focal 7879 700  T77.78  86.56

T% NB-AC 84.62 76.48 86.44 86.78

gﬂz CE 83.32 7473 8467 86.56

= Unet Dice 81.13  71.87 81.78  85.89

Focal 79.98  70.87 80.22  86.44

NB-AC 84.97 76.92 87.89 86.11

CE 7857 7374 77.33  80.00

pey Dice 7767 7294 7500  81.00

% Focal 72.33  68.08 69.00 78.00

i NB-AC 79.96 75.16 79.66 80.33

% CE 7940 7459 7833  81.00

M Unet Dice 7821 7344 7733 T8.67

Focal 76.38  78.93 68.00 87.00

NB-AC 80.38 7548 81.25 82.19

CE Loss 87.95 8391 90.25 9175

pe _Dice 86.44  82.14 895  90.25

- Focal 83.10 7851 87.25 88.0
S

S NB-AC 8895 85.11 91.5 92.25

& CE 83.01  85.06 9125 92.25

" Unet Dice 87.10  83.01 90.03 90.5

Focal 87.07 8290 89.75 91.0

NB-AC 89.73 86.05 92.25 92.0

*blue colored texts denote our results, bold texts denote the highest results for each datasets
on each metrices and backbones, yellow-highlighted texts denote the highest results for each

datasets on each metrices.
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It is clear that the proposed NB-AC loss function outperforms the other common
losses under both UNet and FCN frameworks. Take DSC metric on CE loss
as an instance, our loss gains 1.36%, 1.39%, 1.0% on MRBrainS18, Bratsl18,
iSeg19 respectively using Unet framework and it gains 1.65%, 0.98%, 0.82% on
MRBrainS18, Brats18, iSegl9 respectively using FCN framework.

Fig. 5.7, 5.8 and 5.9 visualize the comparison between our proposed NB-AC loss
against other loss functions including Dice, Focal (FC) and Cross Entropy (CE)
on Unet framework. These images are randomly select from the testing set of
various dataset, namely MRBrainS 2018, BRATS 2018, iSeg 2019. As shown in
Fig.5.2, medical images contain poor contrast images where boundary between
objects is very unclear and weak. Take iSeg dataset as an instance, due to the
myelination and maturation process of the infant brain, the boundary between
classes in the infant brain in iSeg is very weak, leading to difficult for seg-
mentation. The segmentation results from different loss functions are visualized
in Fig.5.9 (top) with specific differences are highlighted in colored boxes. The
infant brain MR images (iseg-2019 dataset) has extremely low tissue contrast
between tissues, thus the segmentation results using traditional loss functions
(such as CE, Dice, and Focal loss) have a large amounts of topological errors
(contain large and complex handles or holes) in the segmentation results, such
as WM surface in the Fig.5.9 (bottom) which illustrates a enlarged view of the
white matter surface of an infant brain. Fig.5.9 (bottom) demonstrates that the
proposed NB-AC loss function produces less topological errors (i.e., holes and
handles), indicated by the red arrows, compared against the existing loss func-
tions. In addition to 2D view of brain as in Fig.5.9, 3D view of the entire view
white matter surface as in Fig.5.10 demonstrates that the proposed NB-AC loss
function produces less topological errors (i.e., holes and handles), indicated by

the red arrows, compared against the existing loss functions.

In Fig. 5.9, the weak boundary around gray matter, white matter, CSF is high-
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light in colored boxes. In such colored boxes, we can see the boundary is shown
in poor contrast in the original image. Far apart from other loss functions which
are unable to capture such information, the proposed NB-AC has high capability
to work on the case of weak object boundary segmentation. Not only weak object
boundary but also imbalanced-class data, figure 5.7, 5.8 contain the performance
of middle slide of each image/volume that are from MRBrainS 2018, BRATS
2018 datasets. At each figure, the colored boxes highlight areas corresponding
to small class data and weak boundary object (specially the object boundary).
Compared against other loss functions, our NB-AC loss obtains closest result to

the groundtruth under both cases of weak boundary object, small object.

Clearly, comparing with the common segmentation losses, the proposed NB-AC
loss improve the segmenting performance using the same network backbone.
Take CE loss function as an example, the proposed NB-AC loss improved from
87.95% to 88.95% segmentation accuracy using FCN architecture and 88.91%
to 89.73% using U-Net architecture. Fig. 5.7, 5.8, 5.9 visualizes the comparison
between our loss and other loss functions. In these figures, some regions are

highlighted to see the difference in segmentation results between loss functions.

The segmentation results from different loss functions are visualized in Fig.5.9
(a) with specific differences are highlighted in colored boxes. Fig. 5.9 (b) il-
lustrates a enlarged view of the white matter surface of an infant brain from
the regions highlighted in blue boxes of Fig. 5.9 (a). Fig.5.9 (b) demonstrates
that the proposed NB-AC loss function produces less topological errors (i.e.,
holes and handles), indicated by the red arrows, compared against the existing
loss functions. For more detailed visualization, we provide the entire view white

matter surface obtained from different loss functions in Fig.5.10.

Table 5.4 shows the comparison against other state-of-the-art methods on three

volumetric datasets. Our performance is quite compatible with [133] on MR-
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BrainS13 while it outperforms [134] and [4] on BratS18 and iSegl9 with similar
network architecture setting up. The result noted in this table for iSeg also lever-
ages the information gained from 24 month dataset (section 5.3.2, without the
information from GAN, this Active Contour 3D Unet has already achieved a
DSC score of 92.56 on 6000 epoches (to our furthest knowledge, the current
SOTA on 3D Unet [4] only scores 92.55 on DSC).

5.3.2 The Active Contour Unet with Guided Segmentation

Transferring the knowledge from 24 month dataset to 6 month dataset in iSeg
dataset, we detailed the training state of cycle gan segmentation in section 5.3.3.
Using the knowledge learnt by the Cycle GAN Segmentation model from the 24
month brain dataset in BCP, we conduct an experiment striving to transfer this
knowledge on to the Active Contour Unet and received a result of 93.07 on the
3D iSeg 2019. Which is an increment of 0.51 from 92.56, supposedly supports

the proposed Narrow Band Active Contour loss.

Table 5.4: Comparison of our proposed loss on 2DUnet and 3DUnet against
other 2D and 3D state-of-the-art methods on medical datasets

Datasets DSC Recall
Brats18 [135]/ Ours ]  77.75 / 80.38  80.1 / 82.19
2D
SegmentatjonMRBrainS].S [[136]/ Ours ]8248 / 84.97 */ 86.11
iSeg19 [[137]/ Ours | 89.00 / 89.73 -/ 92.00
Brats18 [[134] Ours | 84.87/ 85.67 —/ 86.47
3D
SegmentationMRBraiHS]_B [[133]/ Ours ]87.17/8702 - / 87.89
iSeg19 [[4] Ours | 02.55 / 93.07  92.64/ 93.16

*blue colored texts denote our results and bold texts denote the highest results
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5.3.3 Training inference

We use Baby Connectome Project dataset to experiment our method. Our model
was trained and tested on two periods that are 6-month old and 24-month old.
We use 4 subjects with labels in each time-points to train the segmentation net-
work S, and S,. The original resolution of these images used in our experiments

1S 0.8 X 0.8 x 0.8mm.

However, to test our result on Iseg 2019 competition we have to resize down to
1.0 x 1.0 x 1.0mm to get the same image resolution to Iseg test set’s resolution.
Then we use outer interpolation to downsize the resolution of these images we
used to test in Iseg-2019 challenge. We linearly interpolate the image in a cubic

of 1.0 x 1.0 x 1.0mm.

The pixel value of images was changed after interpolation that make it hard to
evaluate our result in the new resolution so we have to render again that value
in the boundary region, particularly where the combination two out of three

regions white matter, gray matter and cerebrospinal fluid.

The render algorithm we use to take an accurate value for each pixel is k-means
clustering, with £ = 3. We normalized the input image to [—1, 1] to easily com-
pute. However the memory resource we have is limited so we have to randomly
cropped a small region with a size of 32 x 64 x 64 ( where 32 is number of slice),
to test these cubic using our network we apply evaluation metric Dice Similarity
Coefficient (DSC) to calculate the percentages of intersection between predicted
cubic and label cubic. We use the adam optimizer with a batch size of 8 to train

the network, we initialize the learning rate at 0.0002.

The 6-month old U-net segmentation network S, was train on 16000 epoches
and the same number of iterations was applied to train 24-month old U-net

segmentation network S,. The method used U-net with instance normalization as
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the generator and a patch-based fully convolutional network as the discriminator.
Before we train the Cycle-gan model to convert the input image from 6-month

old to 24-month and vice versa in total 6000 epoches.

The balance weights were set as A = 10, § =5, v = 3 and ( = 2, we freeze the
wegihts of the segmentation networks so that it can adjust our segmentation

result guided from cycle-gan model.
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Original

Figure 5.7: Qualitative result on MRBrainS 2018: Comparison between our re-

sults against other loss functions on Unet framework where the image is from

MRBrainS 2018.

91



Original

¢
§

Figure 5.8: Qualitative result on BRATS 2018. Comparison between our results

against other loss functions on Unet framework where the image is from BRATS

2018.
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Figure 5.9: Qualitative result on iSeg 2019. (top) Comparison of our proposed

NB-AC loss against other loss functions on iSegl9 datasset with colored boxes
highlighting specific differences. (bottom) A loser look is also given with the

topological errors indicated by red arrows.
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Figure 5.10: Visualization of white matter surface of the existing loss functions

on iSegl9 dataset where differences in topology are indicated by red arrows.
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CHAPTER 6
CONCLUSION

The two main tasks in medical images segmentation are: (1) segment MRI into
different areas (e.g. WM, GM, CSF) to get a better understand on brain struc-
ture, therefore it is important to keep the topological structure; (2) detect and
segment lesion (brain tumor) into different classess with high accuracy. To sum
up this work, we attempt to tackle the common problems in medical imaging
(directly related to the two main tasks) which are less annotation, imbalance
data, and low contrast (or weak boundary). For the less annotation problem, we
leverage the Cycle GAN Segmentation model proposed by Toan Duc Bui et al.
[6] - using Cycle GAN as an data augmentation method. To address the weak
boundary (or low contrast) problem, we propose adding an attention gate on the
edge - calculating the dice score on the thick boundary of the segmented mask
outputted from Unet. To deal with the imbalance data problem, we focus more
on the narrow band around the contour under level set energy minimization,
which aims to lessen the effect of large objects on the original segmentation loss

where all pixels are treated equally (either inside small or large objects).

Wrapping everything up, we proposed a Narrow Band - Active Contour loss
which is the summation of the segmentation loss (CE loss), the attention bound-
ary loss (DICE score on thick boundary), and the narrow band active contour
energy on considered mask. To testify the efficiency of the proposed loss func-
tion, we provide small tests using the proposed loss on both 2D /3D Unet and
Fully Connected Network (FCN) comparing with other losses. And we receive a
result of 92.56, 87.02, 85.67 DSC scores relatively on iSeg19, MRBrainS13 and
Brats18 using 3D Unet trained with the proposed loss (Active Contour Unet in
section 5.3). Adding the aforementioned Cycle GAN Segmentation model with
the 3D Unet using this loss function (Active Contour Unet with Guided Seg-
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mentation in section 4.3, 5.3.2), we achieve a promising DSC score of 93.07. The
dataset we used in this works are MRBrainS 2013, iSeg 2019, Brats 2018, and
also a subset of data from BCP used in transfer learning for Unet; The major

task in these dataset is segmentation the target tissues.

Future work. There exist various segmentation Unet-like models paying more
attention to the object boundary or aiming for better medical image feature
representation, as well as multiple methods tackling the CNN oversampling /un-
dersampling problem. In the near future, we shall experiment some of these
approaches to build a better segmentation model, also better in terms of time

inference and accuracy performance.
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