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ABSTRACT

Biomedical imaging is the technique and process that involves a very broad field.

It covers data acquiring, image processing, structure visualizing to medical di-

agnosis based on features extracted from images. Medical image segmentation

is one of the most challenging tasks in medical image analysis and widely devel-

oped for many clinical applications. While deep learning-based approaches have

achieved impressive performance in semantic segmentation, they are limited to

pixel-wise settings with less annotation, imperfect data, imbalanced-class

data problems and weak boundary object segmentation in medical images.

This project tackles the aforementioned limitations by proposing a 3D deep

neural network, which inherits the merits from Active Contour model and is

guided by a Cycle-Consistent Adversarial Networks (CycleGAN). CycleGAN

aims at transferring data from source domain to target domain to

address the problem of less annotations. In addition to CycleGAN, which

helps to transfer the image appearance between the two time-points, we employ

the segmentation features to enforce the generator network to guarantee the

tissue segmentation consistency, results in more realistic synthetic images. In

order effectively process MRI images, which is shown as volumetric data, we

improve 2D CycleGAN to 3D CycleGAN. Furthermore we address the problem of

imbalanced-data and weak boundary object by proposing a two-branch UNet-

like architecture i.e. Active Contour Unet. Our proposed Active Contour

Unet network takes both higher level feature and intermediate level and lower

level feature into account. Our network contains two branches: (i) the first branch

extracts higher level feature as region information by a common encoder-decoder

network structure such as Unet, FCN; (ii) the second branch focuses on both

intermediate level feature as support information around boundary and lower

level feature on the boundary/surface. All two branches processes in parallel into

x



an end-to-end framework. In the second branches namedNarrow Band Active

Contour (NB-AC) attention model, the object contour/surface plays the

role of a hyperplane and all data inside a narrow band as support information

that influences the position and orientation of the hyperplane. The proposed

network loss contains two fitting terms: (i) high level features (i.e. region)

fitting term from the first branch; (ii) lower level features (i.e. contour) fitting

term from the second branch including the (ii1) length of object contour and

(ii2) regional energy functional formed by the homogeneity criterion of both

inner band and outer band neighboring the evolving curve or surface. In order

to develop the proposed network regardless medical image modalities of 2D or 3D

volumetric, we have improved CycleGAN which was original developed on 2D to

3D volumetric and our two-branch UNet-like architecture has been implemented

under 3D network.

The proposed network has been evaluated on different challenging medical im-

age datasets including iSeg19, MRBrainS18 and Brats18. The experimental

results have shown that the proposed Active Contour Unet with our NB-AC loss

outperforms other mainstream loss functions such as Cross Entropy,

Dice, Focal on the common segmentation frameworks such as FCN and Unet.

Our 3D network which is built upon the proposed NB-AC loss and 3D-Unet

framework with the guidance from CycleGAN archives the state-of-the-art re-

sults on multiple volumetric datasets.
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CHAPTER 1

INTRODUCTION

The development of biomedical imaging techniques, which provides detailed

cross-sectional anatomies, leads the way for advanced deep learning approaches

beneficial to medical analysis or early diagnosis [1, 2]. For instance, segmentation

– the most prerequisite task in medical image processing, as it extracts the region

of interest (ROI) and defines the specific boundaries between divided areas of

the image. Several clustering or segmenting strategies based only on the global

characteristic of the image can also acquire requested results, though proved not

very efficient for involved multi- modality inputs [3], specifically Magnetic Res-

onance Images (MRI). MRI modality can provide complementary information

depending on variable acquisition parameters, such as T1, T1c, T2, Flair and

it has been widely used in biomedical imaging. Recently, deep learning-based

approaches have obtained the state-of-the-art performance in multiple task in-

cluding image segmentation in both computer vision and medical imaging. There

are two main categories Based on the dimensions of convolutional kernel and in-

put size, approaches for volumetric segmentation can be categorized into two: (i)

2D approaches and (ii) 3D approaches. The former approaches take 2D image

slice as input, and the feature map of a full volume is formed by feature map

of individual slice. In these approaches, the 2D convolutional kernels are able to

leverage context across the height and width of the slice to make predictions;

however, they inherently fail to leverage context from adjacent slices. The 2D

approaches can efficiently reduce the computational cost for training but the

performance is limited compared to the 3D approaches. The 3D approaches take

the 3D image as input and apply the 3D convolution kernel to exploit the spatial

contextual information of the image. Since these approaches can utilize the in-

formation from adjacent slices for extracting prediction map, they have archived

the state-of-the-art results in volumetric segmentation Densenet [4, 5, 6], Unet
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[7, 8], Vnet [9], DeepMedic [10]. Besides, so as to leverage the available data, it

is crucial to preprocess medical images: normalize, de-noising, contrast enhance-

ment, cranium removal or bias field correction and augmentation; These can be

operated in diverse ways: traditional method (flipping, centering, etc.) or the

trending tactics relating to generative adversarial neural networks (GAN).

Most deep learning (DL)-based segmentation networks have made use of com-

mon loss functions e.g., Cross-Entropy(CE), Dice [11], and the recent Focal [12].

These losses are based on summations over the segmentation regions and are

restricted to pixel-wise settings. Not only pixel-wise sensitivity, these losses are

unfavorable to small structures, do not take geometrical information into ac-

count as well as limited to imbalanced-class data and weak boundary objects

problems. Furthermore, these losses are working on higher level features of region

information and none of them intentionally are designed on lower level features

such as edge/boundary which plays an important role in medical imaging. We

have some observations on medical images as follows: (i) Boundary informa-

tion plays a significant role in many medical analysis tasks such as shape-based

cancer analysis, size-based volume measure. (ii) Medical images contain weak

boundaries which make segmentation tasks much more challenging due to low

intensity contrast between tissues, and intensity inhomogeneity. For example,

the myelination and maturation process of the infant brain, the intensity distri-

butions of gray matter(GM) and white matter (WM) have a larger overlapping

thus the boundary between GM and WM is very weak, leading to difficulty

for segmentation. (iii) In the medical image segmentation problem, imbalance-

class data is naturally existing. Those two challenges of the imbalanced-class

data and the weak boundary object in medical imaging are visualized in Fig. 5.2

and demonstrated in Fig.5.1. Fig.5.1(a) illustrates the imbalanced-class prob-

lem in medical images through the statistical class distribution of four different

datasets. For each dataset, the number of samples between classes are varied.
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Fig.5.1(b) shows statistical values of Mean/Std/Median of pixel intensity in in-

dividual class when pixel values are in [0,1]. Within an individual dataset, the

difference between classes in term of Mean/Std/Median is very small. Strong

correlation between classes makes the problem of distinguishing classes more

challenging specially at the boundary as shown in Fig.5.2 which is known as

weak boundary problem.

To address the aforementioned problems of weak boundary, imbalance

data, we make use of the advantages of LS [13] and propose a two-

branch deep network which explicitly takes into account both higher level

features, i.e object region in the first branch and lower level features, i.e. contour

(object shape) and narrow band around the contour in the second branch. The

first branch is designed as a classical CNN, i.e. an encoder-decoder network

structure whereas the second branch is built as a narrow band active contour

(NB-AC) attention model which processes in parallel to the first branch. The

proposed loss for our NB-AC attention model contains two fitting terms: (i)

the length of the contour ; (ii) the narrow band energy formed by homogeneity

criterion in both inner band and outer band neighboring the evolving curve or

surface as illustrated in Fig. 5.6. The higher level feature from the first branch is

connected to the lower level feature in the second branch through our proposed

transitional gates and both are designed in an end-to-end architecture. Thus,

our loss function not only pays attention to region information but also focus on

support information at the two sides of the boundary under a narrow band. In

this proposed network, we consider the object contour as a hyperplane whereas

information in the inner and outer bands aims play the role of a supporter which

influences the position and direction of the hyperplane.

Furthermore, generative adversarial neural networks (GAN) has been utilized

in multiple purposes of biomedical images processing such as reconstruction,

image synthesis, or anomaly detection. Among which, medical image synthe-

3



sis, adopting various favorable models like GANs [14], Conditional GAN [15]

or cycle-GAN [16, 17, 18], recycle GAN [19] for domain translation, plays both

an impressive role in augmentation solving the adversity of lacking detail an-

notated data or bias datasets (e.g. scarce amount of data for a rare disease)

and a promising shift for patient’s privacy issues. Alongside with the race of

modernistic neural network models, various other researches tackle the problem

of bettering image processing via the amendment of loss functions for diverse

purposes, distinguished as boundary-based, region-based, distribution-based or

compound loss. These recent researches have significantly contributed to the

CNN-based methods for multi-modalities medical images segmentation. For in-

stance, varied attractive approaches have been proposed following this novel

trend attempting to use GAN to translate inputted images from one domain

to another to guide the segmentation results, with interesting uses of the loss

functions. This bridges an ambition to study the effectiveness of the idea us-

ing domain transferring for guided segmentation. Inspired by the blossoming of

GAN, we tackle the problem of less labeled data in medical imaging

by first improving 2D cycle-GAN [16, 17] to 3D cycle-GAN and then

integrating the proposed 3D cycle-GAN into our proposed NB-AC

Unet under end-to-end transfer learning framework.

In the following chapters, we will discuss roughly about the background and

related work of this problem, our methods as well as experiments either directly

or indirectly relating to this problem. In chapter 2, we will note some basic

methods for deep learning and deep learning in medical problems. In chapter

3, we will note some previous techniques (to our furthest knowledge) solving

relating problems. Chapter 4 and chapter 5 will be about several approaches we

tackled the problem as well as the experiment results for a better understanding

of relating works. Future works and other possible approaches are provided in

chapter 6. The contributions in this work are:

4



• Study the properties of medical imaging analysis and the challenges in

medical images segmentation.

• Study two main areas in deep neural networks, namely, Convolutional Neu-

ral Networks (CNN) and Generative Adversarial Networks (GAN).

• Study the active contour theory, specially we focus on zero level set ap-

proach, which is based on Mumford -Shah energy minimization and the

most successful active contour model for medical image segmentation.

• Utilize the active contour theory, i.e. variational level set framework to

address the weak boundary problem in medical images segmentation.

• Utilize the narrow band theory to address the imbalance data problem in

medical images segmentation.

• Utilize CycleGAN to address the less labeled data problem in medical im-

ages segmentation.

• We have implemented and reproduced the performance of the state-of-the-

art work proposed by [6] which utilized CycleGAN to improve segmentation

performance on iSeg19.

• Extend the 2D CycleGAN [18], which was designed for 2D data, to 3D

CycleGAN to effectively work on volumetric data.

• Our proposed network is able to tackle multiple limitations in medical

images segmentation, namely, less annotation, imperfect data, imbalance

class problems and weak boundary object segmentation.

• The entire proposed network is implemented under 3D network architecture

and end-to-end framework.
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CHAPTER 2

BACKGROUND

This chapter includes three main section discussing medical image and its chal-

lenges (section 2.1.2), contour-based approaches (section 2.2) and popular deep

learning-based methods (section 2.3.2). In the later parts, we provide an overview

of different types of medical images (especially magnetic resonant image for

brains), an overview of medical imaging methods with their limitations.

2.1 Medical images and its challenges

There are several common problems in image processing which can be applied for

detecting and analysing brain tissues, such as classification, detection and seg-

mentation, etc. No matter what, the most basic step is to understand thoroughly

the common input data for brain medical imaging problems: MRI sequences, es-

pecially our target problem - brain images. Only after that, image processing

can be applied to solve the problems.

2.1.1 Understanding MRI sequences

The MRI sequences is the sequences of event happened inside the MRI machines,

which give us the MRI images by adding photons energy to the tissues and

observing the rate of bounced back energy 1. There are several common MRI

sequences, such as T1, T2, FLAIR (fluid attenuation inversion recovery), GRE,

DWI, and so on. Each type of the MRI sequences comes with different attributes

and preferred usage. Here, we will only discuss brain MRI images as it directly

related to our considered problem.

T1 and T2 brain sequences are similar: water and fat have opposite intensity

1The contrast of MRI images shows the differences in relaxation of photons in different
brain tissues.
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within a sequence and substances in T1 and T2 also have opposite intensity.

Table 2.1 shows the intensities of common tissues in T1, T2 and Flair in brain

MRI and example in figure 2.1 illustrates the differences2.

In T2 MRI, lesions (inflammation in table 2.1) are hard to be distinguish from

CSF as they are both bright regions, but can easily be done with Flair (Flair is

the same as T2 except for CSF regions are flipped back to dark). This can be

illustrates with figure 2.2 3.

For other types of MRI sequences, GRE (gradient echo or also known as T2*), in

brief, shows paramagnetic substances in dark intensity, and it is one of the few

brain MRI sequences can help to detect hemorrhages. DWI (diffusion weighted)

can help to clearly distinguish infractions (figure 2.3). Which can also help to

detect lesion or tumor due to the abnormal phenomenon of infarction. Hence, in

summary, it is better to predict brain symptoms using multiple MRI sequences

(T1 and T2 enhanced version or weighted version may be used instead of T1 or

T2).

Table 2.1: Comparison of T1, T2 and Flair in brain MRI 3

Tissue T1-Weighted T2-Weighted Flair
CSF Dark Bright Dark

White Matter(WM) Light Dark Gray Dark Gray
Cortex Gray Light Gray Light Gray
Fat Bright Light Light

Inflammation
(infection, demyelination) Dark Bright Bright

2.1.2 Medical imaging challenges

We have some observations on medical images as follows: (i) Boundary informa-

tion plays a significant role in many medical analysis tasks such as shape-based

2Table 2.1 and figure 2.1 are adapted from Davis C Preston, Case Western Reserve Uni-
versity

3Figure 2.2 is adapted from MRI sequences
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Figure 2.1: Comparison of T1, T2 and Flair in brain MRI 2

Figure 2.2: T2 versus Flair in detecting edema3

cancer analysis, size-based volume measure. (ii) Medical images contain weak

boundaries which make segmentation tasks much more challenging due to low

intensity contrast between tissues, and intensity inhomogeneity. For example,

the myelination and maturation process of the infant brain, the intensity distri-

butions of gray matter(GM) and white matter (WM) have a larger overlapping

thus the boundary between GM and WM is very weak, leading to difficulty

for segmentation. (iii) In the medical image segmentation problem, imbalance-

class data is naturally existing. Those two challenges of the imbalanced-class

data and the weak boundary object in medical imaging are visualized in Fig. 5.2
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Figure 2.3: T2 versus Flair in detecting infarction2

and demonstrated in Fig.5.1. The fig.5.1(a) illustrates the imbalanced-class prob-

lem in medical images through the statistical class distribution of three different

datasets. For each dataset, the number of samples between classes are varied.

Fig.5.1(b) shows statistical values of Mean/Std/Median of pixel intensity in in-

dividual class when pixel values are in [0,1]. Within an individual dataset, the

difference between classes in term of Mean/Std/Median is very small. Strong

correlation between classes makes the problem of distinguishing classes more

challenging specially at the boundary as shown in Fig.5.2 which is known as

weak boundary problem.

2.2 Active Contour Technique for Image Segmentation

There are two main approaches in active contours: snakes and level sets. Snakes

explicitly move predefined snake points based on an energy minimization scheme,

while level set approaches move contours implicitly as a particular level of a

function.
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2.2.1 Classic Snakes

The first model of active contour, named classic snakes or explicit active contour,

was proposed by Kass et al.[20]. In this approach, a contour parameterized by arc

length s as C(s)(x(s), y(s)) : 0 ≤ s ≤ 1. An energy function E(C) can be defined

on the contour such as

E(C) =

∫ 1

0

Eint + Eext (2.1)

where Eint and Eext are the internal energy and external energy functions, re-

spectively. The internal energy function determines the regularity, i.e. smooth

shape, of the contour

Eint(C(s)) = α|C ′(s)|2 + β|C ′′(s)|2 (2.2)

Here α controls the tension of the contour, and β controls the rigidity of the

contour while C ′(s) makes the spline act like a membrane (like “elasticity”) and

C ′′(s) makes it act like a thin-plate (like “rigidity”). The external energy term

determines the criteria of contour evolution depending on the image I(x, y), and

can be defined as

Eimage = wlineEline + wedgeEedge + wtermEterm (2.3)

The first term Eline = I(x, y) depends on the sign of wline which guides the

snake towards the lightest or darkest nearby contour. The second term Eedge =

−|5I(x, y)|2 attracts the snake to large intensity gradients. The third term Eterm

attracts the snake toward termination of line segments and corners. Eterm is

defined using curvature of level lines in C: Eterm =
(φ2

xφyy−2φxφyφxy+φ2
yφxx)

|5φ|3 . Fig.2.4

shows an example of snake with 70 snakes points forming a contour around the

moth. Each point moves towards the optimum coordinates, where the energy

10



function converges to the minimum.

Figure 2.4: An example of classic snakes [21]

The snake provide an accurate location of the edges only if the initial contour

is given sufficiently near the desired edges. Moreover, snake cannot detect more

than one boundary simultaneously because the snakes maintain the same topol-

ogy during the evolution stage.

2.2.2 Level Set Method

Level set (LS) based or implicit active contour models have provided more flexi-

bility and convenience for the implementation of active contours, thus, they have

been used in a variety of image processing and computer vision tasks. The basic

idea of the implicit active contour is to represent the initial curve C implicitly

within a higher dimensional function, called level set function φ(x, y) : Ω → R,

such as:

C = (x, y) : φ(x, y) = 0,∀(x, y) ∈ Ω (2.4)
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where Ω denotes the entire image plane. Fig.2.5 (left)shows the evolution of level

set function φ(x, y), and Fig.2.5 (right) shows the propagation of the correspond-

ing contours C.

Φt=2(x, y)

Φt=12(x, y)

Φt=0(x, y)

Φ=0

Φ=0, t = 2

Φ=0, t =1

Φ=0, t = 0

Figure 2.5: Level set evolution and the corresponding contour propagation: (a)

topological view of level set φ(x, y) evolution, (b) the changes on the zero level

set C = (x, y) : φ(x, y) = 0

The evolution of the contour is equivalent to the evolution of the level set func-

tion, i.e. ∂C
∂t =

∂φ(x,y)
∂t . One of the advantages of using the zero level set is that

a contour can be defined as the border between a positive area and a negative

area, so the contours can be identified by signed distance function as follows:

φ(x) =


d(x,C)) if x is inside C

0 if x is on C

−d(x,C)) if x is outside C

(2.5)

where d(x,C) denotes the distance from an arbitrary position to the curve.

The level set evolution can be written in the form as follows:

∂φ

∂t
+ F |Oφ| = 0 (2.6)

where F is a speed function. In some particular cases, F is defined as mean

12



curvature, F = div
(

Oφ
||Oφ||

)
An outstanding characteristic of level set methods is that contours can split

or merge as the topology of the level set function changes. Therefore, level set

methods can detect more than one boundary simultaneously, and multiple initial

contours can be placed as shown in Fig.2.6

Because the computation is performed on the same dimension as the image plane

Ω the computational cost of level set methods is high and the the convergence

speed is quite slow

2.2.3 Edge-based Active Contours

Edge-based active contours are closely related to the edge-based segmentation.

Most edge-based AC models consist of two components: regularity and edge

detection. The first part determines the shape of contours whereas the second

one attracts the contour towards the edges.

Geodesic active contour (GAC) model, one of the most popular methods among

the edge-based active contour models, was proposed by Caselles et al.[22]. Given

an initial curve C0, the curve evolution is given as:

∂φ(x, y)

∂t
= g(I(x, y))(κ(φ(x, y)) + F )| 5 φ(x, y)| (2.7)

where g denotes a stopping function which is based on an edge indicator scalar

function, i.e. g(I(x, y)) = 1
1+|5φ(x,y)| . The curvature κ maintains the regularity of

the contours whereas the constant speed F keeps the contour evolving. In GAC

model, the contours move in the normal direction with a speed of κ(φ(x, y)) + F

and therefore stops on the edges

Besides inheriting some disadvantages of the edge-based segmentation methods,

such as a reliance on the image gradient, omission of blurry boundaries and a

13



(a) the topological view of level set φ(x, y) evolution

Φ=0, t = 2

Φ=0, t =1

Φ=0, t = 0

(b) the changes on the zero level set C : φ(x, y) = 0

Figure 2.6: Topology of level set function changes in the evolution and the prop-

agation of corresponding contours
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sensitivity to local minima and noise, edge-based active contour models have a

few of their own disadvantages (compared to the region-based active contour

models which will be discussed in the next section) that are due to the structure

of the speed functions and the stopping functions. It is easy to see that the

edge-based active contour models evolve the contour towards only one direction,

either inside or outside because of the constant speed F . Thus, an initial contour

should be placed completely inside or outside the ROI, so some level of a prior

knowledge is still required. Later, Paragios [23] proposed Gradient vector flow

fast geodesic active contour by replacing the edge detection with a gradient

vector field.

2.2.4 Region-based Active Contours

Most region-based active contour models consist of two components: regularity

and energy minimization. The first part is to determine the smooth shape of

contours whereas the second part searches for uniformity of a desired feature

within a subset.

One of the most popular region based active contour models is proposed by

Chan-Vese (CV) [13]. In this model the boundaries are not defined by gradi-

ents and the curve evolution is based on the general Mumford-Shah (MS) [24]

formulation of image segmentation as shown in Eq.2.8.

E =
∫

Ω
|I− u|2dxdy +

∫
Ω/C
|∇u|2dxdy + νLength(C) (2.8)

CV’s model is an alternative form of MS’s model which restricts the solution to

piecewise constant intensities and it has successfully segmented an image into

two regions, each having a distinct mean of pixel intensity by minimizing the
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following energy function:

E(c1, c2, φ) = µArea(ω1) + νLength(C)

+λ1

∫
ω1

|I(x, y)− c1|2dxdy + λ2

∫
ω2

|I(x, y)− c2|2dxdy
(2.9)

where c1 and c2 are two constants. The parameters µ, ν, λ1, λ2 are positive pa-

rameters and usually fixing λ1 = λ2 = 1 and µ = 0. Thus, we can ignore the first

term in Eq. 2.9. Assume that we divide the region Ω into two regions, called ω1

and ω2, which are separated by the zero level set φ. Mathematically,

ω1 = {x, y : φ(x, y) > 0} : inside φ

ω2 = {x, y : φ(x, y) < 0} : outside φ

C = {x, y : φ(x, y) = 0} : on φ

Ω = ω1 ∪ ω2 ∪ C

In the Eq.2.9, the length and the area of zero level set are defined as:

Length(C) =
∫

Ω
δ(φ(x, y))|∇φ(x, y)|dxdy

Area(ω1) =
∫

Ω
H(φ(x, y))dxdy

Where δ(z) be a Dirac delta function. Thus the energy function is rewritten as

follows:

E(c1, c2, φ) = µ

∫
Ω

H(φ(x, y))dxdy + ν

∫
Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

+ λ1

∫
ω1

|I(x, y)− c1|2dxdy + λ2

∫
ω2

|I(x, y)− c2|2dxdy
(2.10)

For numerical approximations, the δ function needs a regularizing term for

smoothing. In most cases, the Heaviside function H and Dirac delta function
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δ are defined as in (2.11) and (2.12), respectively.

Hε(x) =
1

2

(
1 +

2

π
arctan

(
x

ε

))
(2.11)

δε(x) = H ′(x) =
1

π

ε

ε2 + x2
(2.12)

As ε→ 0, δε → δ, and Hε → H. Using Heaviside function H, the Eq.2.10 becomes

E(c1, c2, φ) = µ

∫
Ω

H(φ(x, y))dxdy + ν

∫
Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

+ λ1

∫
Ω

|I(x, y)− c1|2H(φ(x, y))dxdy + λ2

∫
Ω

|I(x, y)− c2|2(1−H(φ(x, y)))dxdy

(2.13)

In the implementation, they choose ε = 1. For fixed c1 and c2, gradient descent

equation with respect to φ is

∂φ(x, y)

∂t
= δε(φ(x, y)[νκ(φ(x, y)− µ− λ1((I(x, y)− c1)2 + λ2((I(x, y)− c2)2] (2.14)

where δε is a regularized form of Dirac delta function and c1, c2 are the mean of

inside the contour ωin and the mean of the outside of the contour ωout, respec-

tively. The curvature κ is given by

κ(φ(x, y)) = −div
(
4φ
|4φ|

)
= −

φxxφ
2
y − 2φxφyφxy + φyyφ

2
x(

φ2
x + φ2

y

)1.5
(2.15)

For fixed φ, gradient descent equation with respect to c1 and c2 are

c1 =

∑
x,y I(x, y)H(φ(x, y))∑

x,yH(φ(x, y))

c2 =

∑
x,y I(x, y)(1−H(φ(x, y)))∑

x,y(1−H(φ(x, y)))

(2.16)
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The optimal level set function φ can be computed by solving the associate Euler-

Lagrange equation. Here, assuming c1 and c2 are fixed,

E =

∫
Ω

f(φ,Oφ)dxdy, (2.17)

then the Euler-Lagrange equation is given by

∂f

∂φ
−O · ∂f

∂Oφ
= 0 (2.18)

We compute each term in the above equation as follows:

∂f
∂φ = ∂

∂φ(vδ(φ)|Oφ|+ µH(φ) + λ1|I − c1|2H(φ) + λ2|I − c2|2(1−H(φ)))

= v|Oφ|∂δ(φ)
∂φ + µδ(φ) + λ1|I − c1|2δ(φ)− λ2|I − c2|2δ(φ)

(2.19)

in which, the first term vanishes since we care about the zero level set (φ = 0).

|Oφ| =
√
φ2
x + φ2

y

∂
∂φx
|Oφ| = 2φx

2
√
φ2
x+φ2

y

= φx

|Oφ|

∂
∂φy
|Oφ| = 2φy

2
√
φ2
x+φ2

y

= φy

|Oφ| ,

(2.20)

⇒ ∂
∂Oφ |Oφ| =

Oφ
|Oφ|

∂
∂Oφ = vδ(φ) Oφ

|Oφ| .

Thus,

∂f

∂φ
−O · ∂f

∂Oφ
= −δ(φ){vdiv(

Oφ
|Oφ|

)− µ− λ1|I − c1|2 + λ2|I − c2|2} = 0 (2.21)

The above equation is valide when φ is the optimal solution. Parameterizing the

descent direction by an artificial time t 0, we can formulate an iterative update
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equation for φ:

∂φ

∂t
= δ(φ){vdiv Oφ

|Oφ|
− µ− λ1|I − c1|2 + λ2|I − c2|2}. (2.22)

Note that when the time derivative vanishes, φ will stop updating.

2.3 Deep learning

In this section, we will mainly discuss techniques in convolutional neural net-

works (CNN) and generative adversarial networks (GAN).

2.3.1 Multi-Layer Perceptron (MLP)

Deep learning models, in simple words, are large and deep artificial neural net-

works. Let us consider the simplest possible neural network which is called

"neuron" as illustrated in Fig. 2.7. A computational model of a single neu-

ron is called a perceptron which consists of one or more inputs, a processor, and

a single output.

o

x0

x1

x2

+1

(a) An example of one neuron which
takes input x = [x1, x2, x3], the

intercept term +1 as bias, and the
output o.

(b) Plot of different activation
functions, i.e. Sigmoid, Tanh and
rectified linear (ReLU ) functions

Figure 2.7: An example of one neuron and its activation functions
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In this example, the neuron is a computational unit that takes x = [x1, x2, x3]

as input, the intercept term +1 as bias b, and the output o. The gold of this

simple network is to learn a function f : RN → RM where N is the number of

dimensions for input x and M is the number of dimensions for output which is

computed as o = f(W,x). Mathematically, the output o of a one output neuron

is defined as:

o = f(x, θ) = σ

(
N∑
i=1

wixi + b

)
= σ(WTx + b) (2.23)

In this equation, σ is the point-wise non-linear activation function. The com-

mon non-linear activation function for hidden units are chosen as a hyperbolic

tangent (Tanh) or logistic sigmoid as shown in Eq. 2.26. A different activation

function, the rectified linear (ReLU ) function, has been proved to be better

in practice for deep neural networks. This activation function is different from

Sigmoid and (Tanh) because it is not bounded or continuously differentiable.

Furthermore, when the network goes very deep, ReLU activations are popular

as they reduce the likelihood of the gradient to vanish. The rectified linear acti-

vation (ReLU ) function is given by Eq. 2.26. These functions are used because

they are mathematically convenient and are close to linear near origin while

saturating rather quickly when getting away from the origin. This allows neural

networks to model well both strongly and mildly nonlinear mappings. Fig. 2.7

is the plot of Sigmoid, Tanh and rectified linear (ReLU ) functions.

Sigmoid(x) =
1

1 + exp−x
(2.24)

Tanh(x) =
exp2x−1

exp2x+1
(2.25)

ReLU(x) = max(0, x) (2.26)
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Notably, the system becomes linear with matrix multiplications if removing the

activation function. The Tanh activation function is actually a rescaled version

of the sigmoid, and its output range is [-1,1] instead of [0,1]. The rectified linear

function is piece-wise linear and saturates at exactly 0 whenever the input is less

than 0.

A neural network is composed of many simple “neurons,” so that the output of

a neuron can be the input to another. An special case of a neural networks is

also called multi-layer perceptron network (MLP) and illustrated in Fig. 2.8.

o

x2

x1

+1

x0

+1

Layer l0 Layer l1 Layer l2

Figure 2.8: An example of multi-layer perceptron network (MLP)

A typical neural network is composed of one input layer, one output layer and

many hidden layers. Each layer may contains many units. In this network, x is

the input layer, o is the output layer. The middle layer is called hidden layer.

In the Fig. 2.8, the neural network contains 3 units of input layers, 3 units of

hidden layer, and 1 unit of output layer.

In general, we consider a neural network with L hidden layers of units, one layer

of input units and one layer of output units. The number of input units is N ,

output units M , and units in hidden layer l is N l. The weight of the jth unit in

layer l and the ith unit in layer l + 1 is denoted by wlij. The activation of the ith

unit in layer l is hli. The input and output of the network are denoted as x(n),
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o(n), respectively, where n denotes training instance, not time.

Convolutional layer

Pooling layer

Person

Beach

Sand

Convolutional layer

Fully connected layer

Figure 2.9: Architecture of a typical convolutional network for image classifi-

cation containing three basic layers: convolution layer, pooling layer and fully

connected layer [25]

2.3.2 Convolutional Neural Networks (CNNs)

Neural Networks [26, 27] are a special case of fully connected multi-layer per-

ceptrons that implement weight sharing for processing data that has a known,

grid-like topology (e.g. images). CNNs use the spatial correlation of the signal

to constrain the architecture in a more sensible way. Their architecture, some-

what inspired by the biological visual system, possesses two key properties that

make them extremely useful for image applications: spatially shared weights and

spatial pooling. These kind of networks learn features that are shift-invariant,

i.e., filters that are useful across the entire image (due to the fact that image

statistics are stationary). The pooling layers are responsible for reducing the

sensitivity of the output to slight input shift and distortions. Since 2012, one of

the most notable results in Deep Learning is the use of convolutional neural net-

works to obtain a remarkable improvement in object recognition for ImageNet

classification challenge [28] [29].

A typical convolutional network is composed of multiple stages, as shown in Fig.

2.9. The output of each stage is made of a set of 2D arrays called feature maps.

Each feature map is the outcome of one convolutional (and an optional pooling)
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filter applied over the full image. A point-wise non-linear activation function is

applied after each convolution. In its more general form, a convolutional network

can be written as:

h0 =x;

hl =pooll(σl(w
lhl−1 + bl)), ∀l ∈ 1, 2, ...L;

o =hL = f(x, θ),

(2.27)

where wl,bl are trainable parameters as in MLPs at layer l. x ∈ Rc×h×w is

vectorized from an input image with c is color channels, h is the image height

and w is the image width. o ∈ Rn×h′×w′
is vectorized from an array of dimension

h′ × w′ of output vector (of dimension n). pooll is a (optional) pooling function

at layer l.

CNNs have been applied in image classification for a long time [30]. Compared to

traditional methods, CNNs achieve better classification accuracy on large scale

datasets [28, 31]. With large number of classes, proposing a hierarchy of clas-

sifiers is a common strategy for image classification [32]. Visual tracking is an

another application that turns the CNNs model from a detector into a tracker

[33]. As an special case of image segmentation, saliency detection is another

computer vision application that uses CNNs [34, 35]. In additional to the pre-

vious applications, pose estimation [36], [37] is another interesting research that

uses CNNs to estimate human-body pose. Action recognition in both still images

and in videos are special case of recognition and are challenging problems. [38]

utilizes CNN-based representation of contextual information in which the most

representative secondary region within a large number of object proposal regions

together the contextual features are used to describe the primary region. CNNs-

based action recognition in video sequences are reviewed in [39]. Text detection

and recognition using CNNs is the next step of optical character recognition
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(OCR) [40], word spotting, [41]. Going beyond still images and videos, speech

recognition, speech synthesis is also an important research field that have been

improved by applying CNNs [25, 42]. In short, CNNs have made breakthroughs

in many computer vision areas i.e image, video, speech and text.

2.3.3 Generative adversarial nerwork (GAN)

Generative adversarial network (GAN) comprises of two factors: generative (de-

noted as G) and discriminative (denoted as D) models [43]. The generator G

produces images from random vector noises by capturing and mimicking the

distribution of images in the training set so as to fool the discriminator D; Dis-

criminator D is to estimate the possibility of any given image’s being from the

training data. Both G and D could be either a linear mapping or non-linear

mapping function such as a multi-layer perceptron [44]. The process of GAN

can be considered as a complementary feedback pair. Where the generator striv-

ing to provide secured system while the discriminator trying to test the system

by cracking it. Noted that these two sub-networks share their results with each

other, of whether the system can be cracked.

The generator receives random noise vector and outputs counterfeit images

through its black boxes network. The discriminator distinguish whether the in-

putted images (either generated images or sampled images) are natural (real)

or not by estimating the probability of the inputted images being artificial. The

principle of loss function used in GANs is to select the parameters for the models

which will maximize the likelihood of the training data. This, on the other hand,

can be solved using the log likelihood instead, as to reduce the complexity in

calculation: the product of all samples will become sum in log likelihood.
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θ∗ = argmax
θ

m∏
i=1

pmodel(x
(i); θ) (2.28)

= argmax log
θ

m∏
i=1

pmodel(x
(i); θ) (2.29)

= argmax
θ

m∑
i=1

log pmodel(x
(i); θ) (2.30)

The use of maximizing the likelihood can also be considered as minimizing the

Kullback-Leibler Divergence (KLD), which estimates the distribution distance

between the generator and model. By minimizing KLD between generator and

model distribution, the resulted group of parameters is expected to be the same

as maximizing the log-likelihood of the training set.

θ∗ = argmin
θ

DKL(pdata(x)||pmodel(x; θ)) (2.31)

θ∗ = argmax
θ

Ex∼Pdata
log pmodel(x|θ) (2.32)

The cost used for the discriminator is:

J (D)(θ(D), θ(G)) = −1

2
Ex∼pdatalogD(x)− 1

2
E2log(1−D(G(z))) (2.33)

So far we have specified the loss function for only the discriminator. The next

step is to do so for the generator as well.

The simplest version of GANs game is a zero-sum game, in which the sum of all

player’s costs is always zero.

J (G) = −J (D) (2.34)
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The biggest problem facing in GANs that community pays attention to is the

issue of non-convergence. Most profound models are trained using optimization

algorithms such as SGD, ADAM to figure out a low value of loss function. While

numerous problems can interfere with optimization algorithms which creates a

stable progress trying to reduce the value of loss function. The training of GANs

is to seek for the equilibrium parameters of both generator and discriminator.

To gain some intuition for how gradient descent performs, we delivered some

experiments of loss we have conducted while training GANs.

Common problems in training GAN. Aforementioned, GAN is a successful

method in the image generation, but still challenging to train. It is difficult

to achieve the equilibrium point where the ability of generator is competitive

compared to discriminator’s one: if the discriminator works poorly, the generator

does not have the accurate feedback so the loss function can not represent the

performance of model and it causes a lot of troubles when we were tracking the

loss function to evaluate how well the model works. In brief, GAN loss function

can hardly converge. Vanishing gradient is also another disadvantage of GAN,

this occurs when the discriminator does a perfect job in recognizing real images.

Therefore the loss function L falls to nearly zero and we end up with no gradient

to update the loss during learning iterations.

GAN variations. For different purposes, there exist various popular GAN

variances. To directly tackle the problems mentioned above in training GANs,

WGAN is created to solve the converge and gradient vanishing problems by

using Wasserstein distance to measure the difference between two probability

distributions under K-Lipschitz continuous condition [45, 46]. Wasserstein dis-

tance is claimed to be better than either Jensen Shannon or Kullback Leibler

divergence, for a stable training process using gradient descents as it represents

a smooth measure when two distributions are located in lower separate dimen-

sional manifolds. The conditional GANS (cGANs) [47], on the other hand, with
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an additional label to better exploit the information from the dataset allows

a partially customizable synthesis images. Similary, InfoGAN [48] also utilizes

the information from the given dataset, but in this case, for a much more com-

plex dataset, it tries to exploit the similar information obtained from the training

dataset and the target latent space. Deeper Convolutional GAN or DCGAN [49],

another simple but successful stable training unsupervised GAN model, lever-

ages the batch normalization, convolutional stride, and transposed convolution,

with prospective application in image style transferring. For image domain trans-

fering, there are multiple famous models such as CycleGAN (detailed below),

Recycle GAN [18, 19], Style GAN [50] for generating gradually higher resolu-

tion images by stacking layers training from lower resolution ones, and those

for pixel-level like pix2pix [51], etc. With similar idea of generating high quality

images from lower ones, StackGAN [52] started with sketch images as low-level

resolution given the text description. Or the recent CVPR 2020 SegAttnGAN

model [53] also generates high quality images from text via different stages gen-

erating lower resolution images as a multi-scale generator (instead of starting

from sketch as the lowest resolution image).

Distance metrics. Different distance metrics used in GAN-variation models

can highly affect the performance of the models. Hence, in this part we will

discuss commonly used distance metrics in GAN (as shown in the original paper

of WGAN, Wasserstein-1 outperforms the others).

KL Divergence. The relative entropy or Kullback–Leibler divergence between

two probability distributions P (x) and Q(x) that are define.

DKL(P ||Q) =
∑
x

P (x)log
P (x)

Q(x)
(2.35)
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The relative entropy satisfies Gibbs’ inequality.

DKL(P ||Q) ≥ 0 with equality only if P = Q. (2.36)

Note that in general the relative entropy is not symmetric under interchange

of the distributions P and Q: in general DKL(P ||Q) 6= DKL(Q||P ), so DKL,

although it is sometimes called the ‘KL distance’, is not strictly a distance. The

relative entropy is important in pattern recognition and neural networks.

Jensen-Shannon Divergence. The Jensen-Shannon (JS) divergence

JS(Pr,Pg) = KL(Pr||Pm) +KL(Pg||Pm) (2.37)

where Pm is the mixture (Pr+Pg)
2 . This divergence is symmetrical and always

defined because we can choose µ = Pm.

The Earth-Mover (EM) distance or Wasserstein-1.

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [
∥∥∥x− y∥∥∥] (2.38)

where Π(Pr, Pg) denotes the set of all joint distributions γ(x, y) whose marginals

are respectively Pr and Pg. Intuitively, γ(x, y) indicates how much “mass” must

be transported from x to y in order to transform the distributions Pr into the

distribution Pg. The EM distance then is the “cost” of the optimal transport

plan.

As this EM distance or Wassertein-1 also constrainted to be under Lipschitz

continuous condition searching for the upper bound of expected value distance

between two sample which sampled from difference distributions. We shall dis-

cuss Lipschitz Condition and its former version - the Picard theorem.

Picard theorem Let f(x, y) and ∂f/∂y be continuous functions of x and y on
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a closed rectangle R with sides parallel to the axes. If (x0, y0) is any interior

point of R, then there exists a number h > 0 with the property that the initial

value problem y′ = f(x, y), y(x0) = y0 has one and only one solution y = y(x) on

the interval |x− x0| ≤ h.

Lipschitz Condition is an advanced version of Picard Theorem which contributes

a solid foundation to optimization especially in finding the optimal point. For

instance, our assumption that ∂f/∂y is continuous on R which is its hypotheses,

is used only to obtain the inequality of Lipschitz statement. The definition is

stated below:

Function f(x, y) satisfies a Lipschitz condition in the variable y on a set A ⊂ R2

if a constant k > 0 exists with |f(x, y1)−f(x, y2)| ≤ k∗|y1−y2| , With (x, y1), (x, y2)

are in A and L is Lipschitz constant.

2.3.3.1 Cycle GAN

Image to image translation is now a trending problem in computer vision, with

various applications such as style transferring or novel images generating; How-

ever, an attractive question relating to image translation is how to translate

images without paired examples. A favored solution for this is the use of Cycle

Generative Adversarial Networks (CycleGAN) technique: leveraging the cycle

consistency loss to train unsupervised image translation via Generative Adver-

sarial Networks architecture using only the unpaired assemblage of images from

the two groups. This report summaries the idea of CycleGAN as well as an

overview of its application.

As it is a hindrance to collect paired images for multiple domains, there is a de-

sire for techniques assisting to automatically train style transferring. Hence, the

present of Cycle Generative Adversarial Network (CycleGAN) has laid one of

the first stones for techniques attempting to translate images between different
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domains in the absence of paired examples [18]. The original paper of CycleGAN

proposes two key ideas. One is a variation of Generative Adversarial Network

(GAN) with forward and inverse mapping. The other huge improvement is mod-

ifying the original loss function of GAN with one loss for discriminator and

another for generator by two components are: adversarial loss and cycle consis-

tency loss. The idea of cycle consistency loss was to avoid the images, the source

distribution, to be mapped to random images from the target distribution. The

author suggests using FCN score 2 for evaluating performance of Cycle GAN

[47][18].

CycleGAN uses two generators and two discriminators. One is generator G to

convert images from distribution X to the distribution Y. The other generator is

called F converting images from Y to X. Each generator has their corresponding

discriminator to distinguish between its generated images and the real ones.

Generator architecture has three sections: an encoder, a transformer, and a de-

coder. The input image is fed into the encoder to reduce the representation

size of images and feed to Convolutions layers to extract the representation of

small region and then is passed to the transformer. After that result goes to

the decoder, which use convolutions to enlarge the representation size. The dis-

criminator output the probability of the fixed small region of input images. This

small region is called "patch" images. It is more effective in the way that focuses

on more texture, which is usually being changed in an image translation task.

The loss function was proposed in the paper has two parts, an adversarial loss

and a cycle consistency loss. The adversarial loss attempts to fool the corre-

sponding discriminator. However, adversarial loss alone has limitation to pro-

duce "real" images. For example, a generator generates an image Y which has

distribution mostly like distribution X, but perceptually looked nothing like x,

2to measure the quality of the generated images conditioned on an input segmentation map
[54]
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the result will output a high adversarial loss; Though that is not what we ex-

pect. The proposed loss, cycle consistency loss, solves this issue by relying on

the expectation that if an image was converted to the other domain and back

again, by successively feeding it through both generators. The output will assure

the condition that

F (G(x)) ≈ x (2.39)

G(F (y)) ≈ y (2.40)

This method has huge applications where paired training data does not exist,

especially in style transfer, season transfer, photo enhancement, biomedical, et

al. Beside these applications, the method remains several limitations such as:

not working well with the problems which require understanding of geometric

changes on the object.
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CHAPTER 3

RELATED WORKS

3.1 CNN-based Medical Image Segmentation

Over the last few years, with the resurgence of deep learning and its application

have led to the success of deep convolutional neural networks in the field of

segmentation, image segmentation methods based on deep learning have made

a large progress in terms of accuracy and efficiency. In particular, CNN-based

model gave various successful models to date which can be devided into two

categories, one-stage and two-stage segmentation method.

3.1.1 Single-stage segmentation methods

Single-stage segmentation methods which typically have an encoder-decoder

structure like Unet. In the encoding part the network try to learn the represen-

tation feature of images by sliding convolutional kernel through whole images to

learn different variety of edges or features in the images. For the decoding part,

deconvolution operators are applied to each pixels which contain the information

of instance in order to generate the instance mask.

3.1.1.1 Fully Convolutional Network(FCN)

As an popular approach to segmentation problem, Fully Convolutional Networks

have a great influence on image semantic segmentation progress, which is pro-

posed by Long et al. (2015) for pixel-wise labeling by replacing skip layer and

bilinear interpolation with fully convolutional networks to expand the applica-

tion of classification network to dense prediction. The authors proposed applying

deconvolution operator to the output activation maps where the pixel-wise result

can be calculated. Another important contribution of the authors is fusing the

output with shallower layer’s output so that preserve the contextual spatial in-
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formation of an image as the filtered data progresses go deeper into the network.

The architecture of the network is show in the below figure.3.1 The work has

Figure 3.1: FCN architecture [55]

laid an evidently demonstration that deep networks can be trained in end-to-end

architecture for image segmentation. Despite its efficiency, FCN can not capture

the global context information of an object or volume in efficient way. Therefore

many researcher try to overcome this problem by proposing method to improve

the performance of FCN. Liu et al [56] proposed Parsenet, to address problems

ignoring global context information by using the average feature for a layer to

augment the features at each location to add global context to FCN.

Due to the effectiveness of FCNs-based method, a large number of researcher

have applied it to medical image segmentation problems. Wang et al [57] leverage

FCN-based method to segment multi-modal Magnetic Resonance images with

brain tumor. Yuan et al [58] designed 19-layer deep convolutional neural networks

to deal that is trained end-to-end to deal with automatic skin lesion segmentation

task.
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3.1.1.2 Unet-like model

U-Net [7] has been widely used as encoder-decoder Deep Learning based archi-

tecture for semantic segmentation that can produce highly reliable results on

various metrics like: dice score, surface distance, etc. Unet consists of a down-

sampling fully convolutional network (FCN) followed by an upsampling FCN

known as the network’s contractive and expansive paths in the meanwhile the

skip connections between the downsampling and upsampling branch are em-

ployed to provide local information to the global information while upsampling.

Because of these attributes, the networks has a huge amount of feature maps in

the upsampling path that can be transformed information from raw images to

abstract label. An illustation of Unet is given in Fig. 3.2.

Figure 3.2: Unet architecture [7]

The potential application of Unet in biomedical image segmentation task is

demonstrated by its success for being the winner method on the ISBI challenge

for segmentation of neuronal structures in electron microscopic stacks, further-

more it has been shown the network work fast, take less than a second on typical
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GPU to segment one 512x512 image. The success of Unet in medical image seg-

mentation task has attracted attention of researchers in the world. Dong et al.

[59] incorporated Unet-based model into data augmentation technique to solve

the problem in brain tumor segmentation on Multimodal Brain Tumor Image

Segmentation datasets (BRATS 2015). There are also multiple researches tack-

ling the original Unet architecture trying to enhance the result. Such as Unet++

[60] - adding the skip connections, or in Double-U Unet [61] - adding a constraint

of the reconstruction, or in U2net [62] - leveraging the lower level feature as an

attention to the regression loss. There also others focus more on the feature

representation of the original Unet model, such as the Hyper-Dense Net [63]

leveraging the features extracted from the input using Dense Net. Çiç ek et

al.[8] further modified the U-Net architecture by replace 2D convolution oper-

ations with 3D convolution ones to create a model that can generalize well on

3D volumes, the Xenopus kidney without full annotation of 3D volumes because

of few annotation label data problem in medical images, their work achieved

good results on Xenopus kidney and highly variable 3D structure dataset. 3D

CNNs with residual connections were also proposed in Deep Medic [64] which

is an another successful deep learning approach in medical segmentation i.e.

brain tumor segmentation. These 3D U-nets were shown to outperform current

2D medical imaging segmentation models in many 3D medical imaging datasets

including prostate, kidney, brain tumor, infant brain segmentation. Thus, we

employ 3DUnet as a framework that combine with the other proposed methods

to improve the performance in medical image segmentation for our project.

3.1.2 Two-stage segmentation methods

This method for image segmentation consists of two stages: bounding box detec-

tion and semantic segmentation within each box. Among different CNN-based

semantic segmentation approaches, Fully Convolutional Network and Mask-R-
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CNN got enormous of attention which will be discussed.

3.1.2.1 Mask-R-CNN in image segmentation

Mask-R-CNN [65] extends Faster R-CNN to pixel-level image segmentation.

Based on architecture of Faster R-CNN, it expanded the method for predict-

ing an object mask in parallel with classification and localization. The mask

network is a small- fully-connect network applied to each Region of Interest,

predicting a segmentation mask in a pixel-to-pixel label mapping between raw

images and mask predictions. In the first stage, the network detects objects and

generate object proposals while the second stage is responsible for classifying

these proposals to object bounding boxes and then generate masks. Mask-R

CNN integrate Feature pyramid network as the backbones to generate region of

interest features to increasing the accuracy in object detection phase.

Figure 3.3: Mask-R-CNN architecture [65]

Multi-task loss is employed during training process to calculate the total loss on

each sampled RoI as

L = Lcls + Lbox + Lmask (3.1)
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respectively to Lcls is the classification loss over ground truth and predicting

class, Lbox is the regression loss of bounding boxes when there is an object. Lmask

is calculated using the average binary cross-entropy loss. The author proposed

new kind of loss function Lmask to helps the network with generating masks for

every class without competition among classes based on the classification branch

to predict class label used to select the output mask. This decouples mask and

class prediction produced good instance segmentation results compared to FCNs,

another two-stage image segmentation method, which uses a per-pixel softmax

and a multinomial cross-entropy loss.

Though Mask-R-CNN is a good method for image segmentation, which was

practically worked well on common object segmentation real life dataset like:

Cityscapes, COCO, it’s empirically not good at biomedical images segmentation

task due to morphological variant shape of tissue in medical images such as

cancer tissue especially brain MRI images.

3.2 GAN-based Medical Image Segmentation

Recently Generative adversarial networks(GANs) catched a lot of attention in

biomedical images community because of their ability in data generation without

neither explicitly modelling the probability density function or providing causal-

ity inference. Gan was proposed by Ian Goodfellow et at., 2015. GAN comprises

of two networks which are trained simultaneously, with one called Generator and

the other ones called Discriminator. The generator focuses on image generation

while Discriminator network was trained to detect fake samples which were gen-

erated by the Generator network. An illustration of GAN is shown in the given

image 4.

This has proven to be useful in many task such as image-to-image translation,

4Figure 3.4 is adopted from A Short Introduction to Generative Adversarial Networks
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Figure 3.4: GAN architecture 4

data augmentation relying on the generative aspect of GAN model, which can

help in discovering the underlying distribution of objects or volumes in the train-

ing data then learning to generate new images. This property makes GANs very

potential in dealing with data scarcity for medical image data. The basic frame-

work for image-to-image translation has been proposed by Wolterink et al [66].

By training a CNN jointly with an adversarial CNN, the author aim at improv-

ing the CNN’s ability to generate images with similar feature to that of reference

routine-dose CT images. Chen et al [67] leverage GAN to solve the problem in

reconstructing magnetic resonance images (MRI). In image reconstruction of or-

gans, paired training samples are hard to get so Kang et al [68] proposed to use

CycleGAN with an identity loss in denoising of cardiac CT. GAN-based models

can also be used as an augmentation method, by translating from one type of

medical images to others. One of its successful network with various applications

(such as transferring PET to CT, correct MR motion, PET denoising, etc.) is the

MedGAN, which tries to improve the global consistency using non-adversarial

losses with conditional adversarial framework and a CasNET generator [69, 70].

Similarly to the idea of leveraging loss functions, the Perceptual Adversarial
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Networks (PAN) [71] proposed a perceptual adversarial loss together with the

generative adversarial loss build a novel loss function. Also, recently there exists

a novel method named Cycle GAN Segmentation using the dataset from one

domain with better segmentation result to translate to and enhance the seg-

mentation result in another domain; the idea used here is trying to force the

translated images to have the same segmentation result with it paired original

real image [6], which will be detailed in the later sections.

The sucess of GAN and GAN-based method in medical imaging tasks motivate

us using the property of generating new images to solve our problem in data

scarcity. In particular, because of less annotation data in our dataset, in this

project, we proposed to employ CycleGAN to help with guiding the weight

initialization process during training time.

3.3 Active Contour-based Medical Segmentation

Though medical image segmentation method can detect true regions really well

with deep learning based method, the sensitive noise causes the boundary of

extracted region in the volume could be segmented inaccurately. Leveraging this

observation in medical imaging, many scientists suggest using boundary refine-

ment as an approach to medical image segmentation. Hadon and Boyce [72]

proposed a two-stage method (initialize region segmentation then refine mask)

with co-occurrence matrix used as a feature space and clusters within it are

the considered regions and boundaries. Sato et al. [73] proposed a technique

to obtain an accurate segmentation of 3D medical images for clinical applica-

tions by combining the gradients of the boundary and its neighbourhood pixels

and then applies the gradient magnitude based on edge detectors such as So-

bel detector for boundary improvement. Over the past few years, many efforts

[74, 75, 76] have utilized Active Contour and have been proposed to segment the

object with weak boundary. Among approaches, active contour (AC) methods
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are powerful tools thanks to their ability to adapt their geometry and incor-

porate prior knowledge about the structure of interest. For instance, Level Set

(LS) [13], an implementation of AC using energy functional minimization [24]

has been proven to overcome the limitations of uniquely gradient-based models,

especially when dealing with data sets suffering from noise and lack of contrast

such as weak boundary. Li et al. [77] solved the problem of segmenting images

with intensity inhomogeneity by using a local binary fitting energy. By mini-

mizing the unbiased pixel-wise average misclassification probability, Wu et al.

[78] formulated an active contour to segment an image without any prior infor-

mation about the intensity distribution of regions. By realizing curve evolution

via simple operations between two linked lists, Shi and Karl [79] achieved a fast

level set algorithm for real-time tracking. Also, they incorporated the smooth-

ness regularization with the use of a Gaussian filtering process and proposed the

two-cycle fast (TCF) algorithm to speed up the level set evolution.

In addition to methods for multi-region image segmentation, including mean-

shift clustering, spectral segmentation, greedy algorithms, learning approaches,

level set-based segmentation is another common approach in computer vision.

Level set -based multi-region image segmentation approaches either use a dis-

crete labeling problem formulation and solve it using graph-cuts [80] or minimize

the segmentation functional using convex relaxation techniques [81].

The traditional level set framework is geared towards binary-phase image seg-

mentation. To overcome this limitation, various methods have been developed,

including [82] which associates a level set function with each image region, and

evolves these functions in a coupled manner. Later, [83] performs hierarchical

segmentation by iteratively splitting previously obtained regions using the con-

ventional level set framework. [84] suggested using a single level set function to

perform the level set evolution for multi-region segmentation, it requires man-

aging multiple auxiliary level set functions when evolving the contour, so that
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no gaps/overlaps are created. [85] partitions an image into multiple regions by a

single, piecewise constant level set function, which is obtained using either aug-

mented Lagrangian optimization, or graph-cuts. Later, Li, et al. [86] proposed

an adaptive regularized level-set method to ensure the level-set curve does not

pass through weak object boundaries. New approaches [87], [88], [89] have been

developed to replace the level set model, which investigate effective optimization

schemes [90]. Generally, the level set model minimizes a certain energy function

via gradient descent [91], making the segmentation results prone to getting stuck

in local minima. To conquer this problem, Chan et al. [92] restated the traditional

Mumford-Shah image segmentation model [24] as a convex minimization prob-

lem to obtain the global minimum. The above methods have obtained promising

performance in segmenting high quality images. However, when attempts are

made to segment images with heavy noise, this leads to poor segmentation re-

sults. Existing methods assume that pixels in each region are independent when

calculating the energy function. This underlying assumption makes the contour

motion sensitive to noise. In addition, the implementation of level set methods is

complex and time consuming, which limits their application to large scale image

databases. To maintain numerical stability, the numerical scheme used in level

set methods, such as the upwind scheme or finite difference scheme, must satisfy

the Courant-Friedrichs-Lewy (CFL) condition [93], which limits the length of

the time step in each iteration and wastes time.

Recently, [94] utilized LS [13] into deep learning framework to improve segmen-

tation performance on medical images. However, the two energy terms corre-

sponding inside energy and outside energy are computed with assumption that

the mean values of inside contour and outside contour are constants and set as 1

and 0. Furthermore, [94] applied LS [13] an entire image domain. Different from

[94], our proposed network makes use of LS as an attention gate on narrow band

around the contour. In addition, the mean values of inside contour and outside
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contour in our framework are computed using the deep feature map from the

network. Besides the weak boundary object, the unbalanced data problem in

medical image segmentation has lately been gotten seriously attention [95]. In

[95], a boundary loss was proposed and it is defined as a distance metric on

the space of contours (or shapes), not regions, namely, the objective function is

defined as a distance between two contours. Furthermore, the boundary loss [95]

is implemented as distance between single pixel on the contour, which is high

time consumption. Different from boundary loss [95] which considered as the

distance between predicted boundary and groundtruth one, our proposed NB-

AC loss treats the object contour as a hyperplane and all data inside a narrow

band as support information that influences the position and orientation of the

hyperplane. Our NB-AC loss with attention mechanism which focuses on on the

contour length with the region energy involving a fixed-width band around the

curve or surface.

Some limitations of variational level set approaches are observed as

follows:

• They are unsupervised approaches and therefore require no learning prop-

erties from the training data. Thus, they have difficulty in dealing with

noise and occlusions

• There are many parameters which are chosen by empirical results

• The are build off of gradient descent to implement the non-convex energy

minimization and can get stuck in undesired local minima and thereby lead

to erroneous segmentations

• Most of the level set based approaches are not able to robustly segment

images in the wild

• They often give unpredictable segmentation results due to unsupervised
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behaviors

• The accuracy of segmenting results strongly depends on the number of

iterations which is usually set as a big number

3.4 Class Imbalanced Data

Most of the traditional classifiers assume the input data to be well-behaved in

terms of class distributions, balanced size of classes, etc. However, high class

imbalance is naturally inherent in many real world applications, robust classifi-

cation with imbalanced data is an important area of research. Even the recent

development of deep learning shows incredible performance in many domains

along with its increasing popularity there is still few existing deep learning ap-

proaches for class imbalance. Thus, investigating the use of deep neural networks

for problems of class imbalance is important and interest. This paper is examine

existing deep learning techniques for addressing class imbalanced data.

Class imbalance has been studied thoroughly over the last decades using either

traditional machine learning models, i.e. non-deep learning or advanced deep

learning. Despite recent advances in deep learning, along with its increasing

popularity, very little empirical work in the area of deep learning with class

imbalance exists. The previous works using deep leraning to class imbalance

can be mainly divided into three groups: data-level methods, algorithm-level

methods and hybrid-level methods as follows:

• Data level methods: Those methods aims at altering the training data

distribution by either adding more samples into minority class or removing

samples from the majority class to compensate for imbalanced distribution

between classes.

• Algorithm level methods: Those methods aims at making a modification to
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the conventional learning algorithms to reduce bias towards the majority

by adjusting misclassification costs.

• Hybrid methods: Those methods are a combination of the merits of both

data level and algorithm level strategies

Three categories of solving imbalanced data problem are detailed as follows

3.4.1 Data level methods

This section explores data level methods for addressing imbalanced data with

Deep Neural Networks. Most of these methods preprocess a dataset so that the

number of labeled examples from both the classes become comparable. There are

two approaches in this catergory: (i) under-sampling examples from the majority

class ; (ii) over-sampling examples from the minority class.

Anand et al [96] proposed the first work which explores the effects of class

imbalance on the backpropagation in a shallow network. The authors show that

in the problem of imbalanced data, the majority class usually dominates the

network gradient which is responsible for updating the model’s weights. With

such update, the error of the majority class is quickly reduced while the error of

the minority class is increased. This causes the network to get stuck in a slow

convergence mode.

Hensman and Masko [97] studied the impact of imbalanced training data on

Convolutional Neural Network (CNN) performance in image classification. They

showed that imbalanced training data can potentially have a severely negative

impact on overall performance in CNN, and that balanced training data yields

the best results. They conducted the experiments on The CIFAR-10 [98] bench-

mark dataset, comprised of 10 classes with 6000 images per class. The dataset

is used to generate 10 imbalanced subsets for testing varying class sizes, ranging
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between 6% and 15% of the total data set. In addition to varying the class size,

the different distributions also vary the number of minority classes. Hensman

and Masko chose a variant of the AlexNet [99] as backbone to perform classifi-

cation task. The baseline performance was defined by training the CNN on all

distributions with no data sampling. The over-sampling method being evaluated

by randomly duplicating samples from the minority classes until all classes in

the training set had an equal number of samples. Their imperial results have

shown that over-sampling is a viable way to counter the impact of imbalances

in the training data.

Lee et al.[100] incorporated transfer learning into under-sampling method to clas-

sify highly-imbalanced data sets of plankton classification on WHOI-Plankton

dataset [101]. The data set contains 3.4 million images of over 103 classes where

90% of the images comprised of just five classes (the 5th largest class makes up

just 1.3% of the entire data set and with many classes make up less than 0.1%

of the data set). Their approach contains two-phase learning procedure: In the

first phase, a deep CNN is pre-trained with thresholded data. The thresholded

data sets for pre-training are constructed by randomly under-sampling large

classes until they reach a threshold of N examples. In the experimental results,

the threshold is chosen as 5000 through preliminary experiments, then all large

classes are down-sampled to N samples. In the second phase, the pre-trained

model is fine-tuned using all data. Instead of completely removing potentially

useful information from the training set as in naive under-sampling approach,

the two-phase learning procedure only eliminates samples from the majority

group during the pre-training phase. This allows the model to see all of the

available data during the fine-tuning phase while helping the minority group to

contribute more to the gradient during pre-training. In this work, they conducted

the comparison on six methods which are combined with transfer learning and

augmentation techniques. The imperial results have shown that under-sampling
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aims at increasing the minority class performance while still preserving the ma-

jority class performance.

Instead of under-sampling over-sampling, Pouyanfar et al. [102] proposed a

dynamic sampling technique in order to perform classification task on imbal-

anced image data. Their approach is to combine both over-sampling and under-

sampling strategies which is to over-sample the low performing classes and under-

sample the high performing classes. Their approach contains three core compo-

nents: real time data augmentation, transfer learning, and a novel dynamic sam-

pling method. The first method, various transformations are applied to select

images in each training batch, where Inception-V3 network [103] is used to fined-

tune the network which as pre-trained on ImageNet [104] the second method.

The third method, dynamic sampling, which is able to self adjust sampling rates,

is the main contribution to solve the class imbalance problem.

Recently, Buda et al [105] investigate the effects of class imbalance on classifica-

tion of different deep learning frameworks under different data-level approaches,

namely, over-sampling, under-sampling, two-phase training, and thresholding.

Three popular datasets, namely, MNIST[106], CIFAR-10, and ImageNet to-

gether different CNN architectures were empirically selected. A improved version

of the LeNet-5 [99] and the All-CNN [107] architectures were used as network

backbone. From the empirical results, they have conducted that (i) The effect

of class imbalanced data on classification performance is detrimental.; (ii) The

impact of class imbalance on classification performance increases with the scale

of a task.(iii)The influence of class imbalance not only depends on the by the

lower total number of training cases but also the sample distribution among

classes. In oder to decide which method is used to handle the class imbalanced

data problem during deep neural network training, Buda et al suggested (i)

Oversampling is the one that outperforms all others with respect to multi-class.

(ii) Undersampling is the appropriate method in the case where extreme ratio
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Figure 3.5: Summary of deep learning architectures to class imbalance problem

of imbalance and large portion of classes being minority. (iii) Undersampling is

the choice training time is an issue. (iv) Ti achieve better accuracy, thresholding

should be applied to compensate for prior class probabilities.

3.4.2 Algorithm level methods

In the context of deep feature representation learning using CNNs, data-level

methods may either (i) introduce large amounts of duplicated samples, which

slows down the training process and face to over-fitting problem when perform-

ing over- sampling, or (ii) discard valuable examples that are important for

discriminating when performing under-sampling. Due to these disadvantages of

applying under or over sampling for CNN training, the algorith,-level methods

47



focuses on how to design a better class-balanced loss. Far apart from the pre-

vious data-level methods which focus on changing data distribution, algorithm

level methods focus on modifying deep learning algorithms. Wang et al. [108]

proposed the loss function called mean false error together with its improved

version mean squared false error for the training of deep networks on imbal-

anced data sets. To conduct the experiments, there are eight imbalanced binary

datasets, including three image datasets and five text datasets collected. From

the empirical results, the authors have shown that the mean squared error (MSE)

loss function poorly captures the errors from the minority group in cases of high

class imbalance, due to many negative samples dominating the loss function.

They then proposed loss functions mean false error (MFE) and its improvement

mean squared false error (MSFE) which outperform MSE loss in almost all cases

and have prove to be able to handle the errors from the minority class. To effec-

tively address the extreme foreground-background class imbalance encountered

during training of dense detectors, Lin, et al.[109] proposed focal loss function

which reshapes the cross entropy loss such that it low weights the loss assigned

to well-classified examples. RetinaNet is a one-stage focal loss model which is

evaluated against several state-of-the-art one-stage and two-stage detectors. In

general, RetinaNet model one backbone which is responsible to produce feature

maps from the input image, and the two subnetworks which are responsible to

object classification and bounding box regression. The authors chose feature

pyramid network (FPN) built on top of the ResNet [110] architecture as back-

bone model and it is pre-trained on ImageNet [99]. RetinaNet is trained on both

standard cross entropy loss and the proposed focal loss. The experiments have

shown that using standard cross entropy loss quickly fails and diverges due to the

extreme imbalance whereas the proposed focal loss is able to outperform exist-

ing one-stage and two-stage object detection approaches. Focal loss is then used

by Nemoto et al [111] for image classification task. The authors have concluded
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that focal loss improves problems related to class imbalance and over-fitting by

adjusting the per-class learning speed. In order jointly learns network weight

parameters and class misclassification costs during training, Khan et al. [18] in-

troduced an effective cost-sensitive deep learning (CoSen CNN) procedure which

has been evaluated on six multi-class data sets. The VGG-16 [112] is used as

baseline throughout the experiments. The feature map from VGG-16 is then

modified by the cost matrix that is learned by the CoSen CNN which helps to

give higher importance to samples with higher cost. The proposed cost is then

incorporated into Mean Squared Error loss, Support Vector Machine hinge loss,

and Cross Entropy loss. From the experiments, it is shown that the baseline

CNN, with no class imbalance modifications, is a close runner-up to the CoSen

CNN, outperforming the sampling methods, It is interesting that the baseline

CNN, with no class imbalance modifications, is a close runner-up to the CoSen

CNN, outperforming the sampling methods, Random Forest classifiers in all

cases., and RF classifiers in all cases. Cost-sensitive in deep learning framework

is continuelly studied by Zhang et al. [113]. In order to improve the cost matrix

and incorporate these learned costs into a deep framework, Zong et al. use a

differential evolutionary algorithm. Their proposed cost-sensitive learning ap-

proach, CSDBN-DE, has been evaluated against 42 datasets. In their proposed

network, the cost matrix is incorporated into the output layer’s softmax. Cost

matrices are first randomly initialized and then updated by mutation and cross-

over operations during the training phase. Usually, the class imbalance problem

has been evaluated on a small dataset and reach up to CIFAR-10. Zhang et

al [114], bought the problem up to larger dataset on CIFAR-100 dataset. They

proposed category centers which a combination of transfer learning, deep CNN

feature extraction, and a nearest neighbor discriminator to address the class

imbalance problem. The proposed approach is based on the observations that

(i) the decision boundary made by the final layer of the CNN.(ii) similar im-
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ages of the same class tend to cluster well in CNN deep feature space. Thus,

they suggest to use high-level features extracted by the CNN to compute the

class’s centroid in deep feature space. The proposed category center helps to

improve the classification performance on CIAFAR-10 but not on CIFAR-100.

The proposed method is mainly depends on the category center, the classifica-

tion boundaries may not be strong enough if the annotated training data is not

available to pre-train the network. Focus on the facial action recognition, Ding

et al. [115] experimented with very-deep network architectures to determine if

deeper networks perform better on imbalanced data. They observe that a larger

network contains more local minimum and produce better performance than a

smaller network. One of the special case of imbalanced data, called long- tail: a

few dominant classes claim most of the examples, while most of the other classes

are represented by relatively few examples has been studied in Yin et al.[116]. In

this work, they study the effective number of samples and show how to design a

class-balanced term to deal with long-tailed training data. From the experiments,

they show that adding the proposed class-balanced term to existing commonly

used loss functions including softmax cross-entropy, sigmoid cross-entropy and

focal loss helps to improve the performance. By considering minority samples as

hard samples, Dong et al. [117] proposed Class Rectification Loss to avoid the

dominant effect of majority classes by discovering sparsely sampled boundaries

of minority classes. Their proposed method is based on batch-wise incremental

hard mining of hard-positives and hard-negatives from minority attribute classes

alone. Different from most of the other works that work on global clustering of

the entire training data, Class Rectification Loss is independent to the over-

all training data size, therefore very scalable to large scale training data. They

conducted the experiments two large scale datasets CelebA [118] and and X-

Domain [119] and they conducted the comparisons against 11 different models.

Not only in deep learning, the problem of class imbalance is also studied in deep
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reinforcement learning by formulating the classification problem as a sequential

decision-making process and solve it by deep Q-learning network as proposed in

[120]. In their approach, the agent performs a classification action on one sample

at each time step, and the environment evaluates the classification action and

returns a reward to the agent. The reward from minority class sample is larger

so the agent is more sensitive to the minority class. The agent finally finds an

optimal classification policy in imbalanced data under the guidance of specific

reward function and beneficial learning environment.

3.4.3 Hybrid-level Methods

In order to learn more discriminative deep representations of imbalanced im-

age data, Huang et al. [121] proposed Large Margin Local Embedding method.

The proposed methods is based on observation that the minority groups are

sparse and typically contain high variability, allowing the local neighborhood of

these minority samples to be easily invaded by samples of another class. Their

method to enforce the local cluster structure of per class distribution in the deep

learning process so that minority classes can better maintain their own struc-

tures in the feature space. In their approach, the CNN is trained with instances

selected through a new quintuplet sampling scheme and the associated triple-

header hinge loss. However, their proposed method has a number of fundamental

drawbacks including disjoint feature, quintuplet construction updates and clas-

sification optimisation. Ando et al. [122] introduced Deep over-sampling which

incorporates over-sampling into the deep feature space produced by CNNs. Their

proposed method contains two simultaneous learning procedures: optimizing the

lower layer for acquiring the embedding function and upper layer parameters to

discriminate between classes using the generated embeddings. Their proposed

approach address the effect of class imbalance on both classifier and representa-

tion learning by introducing a general re-sampling framework to learn the deep
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representation and the classifier jointly in a class-imbalanced setting without

substantial modification on its architecture. In this method, the training data

is first augmented by assigning multiple synthetic targets to one input sample.

Then, process of learning the CNN and updating the targets with the acquired

representation enhances the discriminative power of the deep feature.

3.5 Loss function

To train a Deep Neural Network (DNN), the loss function, which is known as

cost function, plays a significant role. Loss function is to measure the average

(expected) divergence between the output of the network (P ) and the actual

function (T ) being approximated, over the entire domain of the input, sized

m× n. We denote i as index of each pixel in an image spatial space N = m× n.

The label of each class is written as c in C classes. Herein, we briefly review the

some common loss functions.

3.5.1 Cross Entropy (CE) Loss

Cross Entropy loss is a widely used pixel-wise distance to evaluate the perfor-

mance of classification or segmentation model. In CE loss function, the output

from softmax layer (P ) is classified and evaluated against the groundtruth (T ).

For binary segmentation, CE loss is expressed as Binary-CE (CE) loss function

as follows:

LCE = − 1

N

N∑
i=1

[Ti ln(Pi) + (1− Ti) ln(1− Pi)] (3.2)

The standard CE loss has well-known drawbacks in the context of highly un-

balanced problems. It achieves good performance on a large training set with

balanced classes. For unbalanced data, it however typically results in unstable

training and leads to decision boundaries biased towards the majority classes.

To deal with the imbalanced-data problem, two variants of the standard CE loss,
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Weighted CE (WCE) loss and Balanced CE (BCE) loss are proposed to assign

weights to the different classes.

In medical image segmentation, a common strategy is re-balancing class prior

distributions by down-sampling frequent labels [123]. However, this strategy ig-

nore some useful information during training. To deal with the imbalanced-data

problem, two variants of the standard CE loss, Weighted CE (WCE) loss and

Balanced CE (BCE) loss are proposed to assign weights to the different classes.

WCE, BCE losses assign more importance to the rare labels and defined as

WCE(T, P ) = − 1
N

∑N
i=1 [βTi ln(Pi) + γ(1− Ti) ln(1− Pi)], where β > 1 is to de-

crease the number of false negatives and where β < 1 is to decrease the number

of false positives. In WCE loss, γ = 1 whereas γ = 1− β in BCE.

3.5.2 Dice loss

Dice loss is proposed by [11]. It measures the degree of overlapping between the

reference and segmentation. Dice loss comes from Dice score which was used to

evaluate the segmentation performance. In general, it is defined as follows:

LDice = 1− 2

∑N
i TiPi∑N

i Ti + Pi
= 2

T ∩ P
T ∪ P

(3.3)

Even though Dice loss has been successful in image segmentation, it is still pixel-

wise loss and has similar limitations as CE loss. Despite Dice loss improvements

over CE loss, Dice loss may undergo difficulties when dealing with very small

structures [124] and weak object boundary as missclassifying a few pixels can

lead to a large decrease of the coefficient.
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3.5.3 Focal Loss

Focal Loss is proposed by [12], Focal loss is a modified version of CE loss. It is

to balance between easy and hard samples as follows:

LFocal =
αi
N

N∑
i=1

(
(1− Pi)γTi ln(Pi) + P γi (1− Ti) ln(1− Pi)

)
(3.4)

In Focal loss, the loss for confidently correctly classified labels is scaled down,

so that the network focuses more on incorrect and low confidence labels than on

increasing its confidence in the already correct labels. The loss focuses more on

less accurate labels than the logarithmic loss when γ > 1.
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CHAPTER 4

METHOD

Medical image segmentation is one of the most challenging tasks in medical im-

age analysis and widely developed for many clinical applications. Although deep

learning-based approaches have achieved impressive performances in semantic

segmentation, their limitations on pixel-wise are extant with imbalanced-class

data problems and weak boundary object segmentation in medical im-

ages as well as less annotation data. Therefore in order to tackle the weak

boundary object problem in medical imaging segmentation we propose the active

contour model that focus on the boundary/surface. To address the aforemen-

tioned imbalanced-class data problems, our network inherits the advantages of

narrow band theory under the zero level set energy minimization. As for the

last problem of less annotation data, GAN is employed as a model which helps

with data augmentation by transferring images from one domain to another do-

main. To begin with, we also conduct a motivating experiment in section 5.2 to

check whether active contour has a promising result on our considered medical

datasets, firstly as a post-processing method on previously trained Unet (guided

with GAN).

4.1 Motivation

Considering problems related to boundary in image segmentation, boundary

refining methods have always been the well-known solutions. As for medical

image segmentation, in general, active contour approaches have been shown to

be effective. This motivated us to experiment some of these methods (the active-

contour-based methods) to scrutinize their efficiency on our collected medical

images. Our collected medical images are 3D images, which allowed us to use

them as either 3D inputs or slicing them as 2D inputs.
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We trained a 2D deep snake model [125] on the training set of iSeg 2019 dataset

and tested with its test set. Via this experiment, this deep snake model has

successfully detected the target regions of different brain tissues; but for the

segmented boundaries, the outputs are smooth and loosely snapped to the target

boundaries. This is why we decided to move to older snake versions, which are

expected to provide us better customization on the energy extracted from a

given image and a mask.

Originally, the active contour or level set based methods aim to solve the energy

minimization equation (section 3.3) to refine the boundary from a single-label

initial boundary and a single input image. This experiment is based on

Chanvese 3.3 method using the result of the Cycle GAN Segmentation (section

4.3.1, 5.3.3) model to extract the initial boundary for each labels. For post-

processing using active contour based on Chanvese, we tried several approaches

for several problems.

Firstly, for multi-modality input, we decided to use the difference in inten-

sities of the two T1- and T2- weighted as the input for the Chanvese model

(refer to 2 for reasons), as T1-w and T2-w mostly have flipped contrasts (table

2.1). We also tried using concatenation of the two images, the intensity sum of

the two images, and resulted in lower segmentation accuracy. The difference in

intensities of T1- and T2- weighted, however, cannot successfully represent the

information from both these images so that we do not expect the active contour

post-processing method to improve the result much. This also motivates us to

move further to the later approach, the Narrow Band - Active Contour loss.

Briefly understanding, Unet can be considered as a feature extractor to obtain a

better representative features for the two inputted images T1- and T2- weighted

to successfully calculate the energy of the given "images" and the given con-

tour (from ground truth for the training dataset), with the hope of this energy

function will guide the Unet model to "extract" the image so that the actual
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boundary regions seems to be boundaries viewing through the active contour

model.

Secondly, formulti-label segmentation problem, especially for this brain tissues

segmentation problems as active contour based methods are often known to be

sensitive to large noise regions. Hence, the first step is to reduce the affect of the

“noises" (in calculating the energy functions), especially the black background in

each slides. As the black background regions is relatively large in comparison to

considered parts of our segmented tissues, and especially have higher intensity

contrast with the considered tissues (intensities contrast between regions are not

as large), keeping this region means adding a force to move the initial boundaries

to the background-foreground brain region (where we can understand as skull

regions).

Experiments shown that for brain MRI images (iSeg in this case), the tissue re-

gions intensity contrast are not high enough for remarkably moving the bound-

aries toward the target gradient regions. Please note that the T1-weighted mi-

nus T2-weighted does not expected to highly represent the two inputted images

and that the initial boundary is extracted from a high result model which also

expected not to be changed much, except for the mis-segmented regions. An

example for the low intensity contrast between tissues (on the originally low

contrast 6-month MRI brain images): the initially segmented white tissues, the

inside region intensities does not seem to be much different from the outside

region intensities (after removing the background). This is the reason why we

later choose narrow band instead of using the whole inside and outside regions

to calculate the energy.

As this is brain tissues segmentation, the available regions between tissues are

not expected to exist, in other words, no holes between regions as well as no

overlapping regions. Hence, we also added another constraint for the above post-
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processing method, which is the constraint for boundary movement not to move

too much into other tissues (in comparison to the initial segmented masks).

In brief, because this is used as a post-processing techniques, we decided to

use the output from previous method based on cycle GAN segmentation as the

initial boundaries. This initial masks have already acquire an acceptable result,

considering DSC; So we would like to restrict the evolution process of this post-

process method to be evolve only in some regions. The regions is defined by

the initial masks. For more details, please visit section 5.3.1. Given the result

obtained by this post-processing experiment, we attempted to build an end-to-

end model as in section 4.2.

4.2 Proposed Active Contour Unet

Our proposed Active Contour Unet (AC-Unet) is motivated by the minimization

problem of CV’s model [13] to efficiently find a contour by minimizing an energy

functional. To address the limitations of CV’s model, we conduct an attention

model to focus on parallel curves of the contour. In the following equations,

ground truth and predicted output are denoted as T and P, where T,P ∈

[0, 1]H×W and H and W are the height and weight of T. Our proposed network

loss contains three branch corresponding to higher-level feature , intermediate-

level feature and lower-level feature loss as follows. Fig.4.2 shows our proposed

segmentation network architecture. Our proposed Active Contour Unet is based

on offset curves thoery as follows:

4.2.1 Offset Curves Analysis

The theoretical background of offset curves is based on the theory of parallel

curves and surfaces [126, 127]. An illustration of offset curve theory is given in

Fig. 5.1. In Fig.5.1(A), the curve Γ, where Γ : Ω→ R2 is called a parallel curve of
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ΓB (either outer curve Γ+B or inner curve Γ−B) if its position vector cB satisfies:

cB(z) = c(z) + Bn(z) (4.1)

where z → c(z) = [x(z), y(z)], x and y are continuously differentiable with respect

to parameter z and Ω ∈ [0, 1]. B is the amount of translation, and n in the inward

unit normal of Γ. Based on this equation, the inner band B− and outer band

B+ are bounded by parallel curves Γ+B and Γ−B. This implies that both curves

are continuously differentiable and do not exhibit singularities. Fig.5.1(B) shows

a case where band width (translation) B1 is smaller than the curve’s radius of

curvature whereas B2 is larger than the curve’s radius of curvature. An important

property resulting from the definition of the Eq.4.1 is that the velocity vector of

parallel curves depends on the curvature of Γ. That means, the velocity vector of

curve ΓB is expressed as a function of the velocity vector, curvature and normal

of Γ. Set n(z) = −αc(z), we have

cB(z) = c(z) + Bn(z) = (1− αB)c(z) (4.2)

That equation provides the length element of inner parallel curve:

lB = ||cB(z)|| = lB(1− αB) (4.3)

This is also a result in parallel curve theory in [128]. Because the length lB is

also positive, the band width should not exceed the radius of curvature it is

expressed as −1
B < α < 1

B . Is this constraint satisfies, the curves Γ+B and Γ−B are

simple and regular.
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(a) Illustration of inner band Bin and
outer band Bout of a contour(C)

bounded by parallel curves C−B and
C+B

!
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(b) Main curve C (black) and two
parallel curves: blue curve CB1 is

generated by a small bandwidth of
translation; red curve CB2 is generated
by larger bandwidth of translation.

Figure 4.1: Demonstration of offset curve theory

4.2.2 Higher Level Feature Branch

The first branch of the network is a standard segmentation CNN which can

utilize any encoder-decoder network such as Unet [7], FCN [55]. Unet [7] has been

widely as end-to-end and encoder-decoder framework for semantic segmentation

60



ℒ2

NB-AC Attention Model 

ℒ1

Skip connection Contour Narrow band

ℒ1	: Region Loss ℒ2	: Contour Length Loss ℒ3	: Narrow Band 
Active Contour Loss 

ℒ3

Figure 4.2: Proposed Active Contour Unet architecture

with high precise results. One of the most important building blocks is skipped

connections which are designed for forwarding feature maps from down-sampling

path to the up-sampling path in order to localize high resolution features. Fully

convolutional networks (FCN) [55] also consists of two paths: down-sampling and

up-sampling paths. The down-sampling path aims to increase the receptive-field

via convolution and pooling layers. In the up-sampling path, the intermediate

features are up-sampled to the input resolution by bi-linear operators. Both

Unet and FCN network architectures are chosen as the network backbones in

our experiments. More formally, for a region segmentation of K classes, the first

61



branch outputs the categorical distribution and the loss is computed as:

L1 = −
K∑
c=1

ycologp
c
o (4.4)

where yco is binary indicator (0 or 1) if class label ’c’ is the correct classification

for observation ’o’ and pco is predicted probability observation ’o’ is of class ’c’.

4.2.3 Transitional Gate

In semantic segmentation, both object region and object contour are closely

related, thus, we present a transitional gate that aims at transferring information

from the first branch to the second branch. The transitional gate acts as a filter

that focuses on extracting lower level feature and removing irrelevant information

from higher level feature. Let denote the output feature representation of the first

branch as FH. The output from NB-AC attention model in the second branch

is denoted as FCL and FNL corresponding to contour feature map and narrow

band feature map. The contour feature map FCL is obtained by applying edge

extraction operator χ on the higher level feature map FH and the narrow band

feature map FNL is obtained by applying parallel curves operator ζ on FCL . In

our experiments, χ and ζ are chosen as the gradient operator and the dilation

operator, respectively. Our NB-AC loss is flexibly incorporated into both 2D and

3D frameworks. In 2D frameworks, the gradient operator (χ) is defined as either

3 × 3 convolutional layer and dilation operator (ζ) is defined as B × B where B

is the width of narrow band. In 3D frameworks, the gradient operator (χ) is

defined as either 3×3×3 convolutional layer and dilation operator (ζ) is defined

as B × B × B where B is the width of narrow band.

FCL = χ(FH) and FNL = ζ(FCL ) (4.5)

62



4.2.4 Lower Level Feature Branch

Our proposed NB-AC attention model in the second branch is motivated by

the minimization problem of CV’s model [13]. CV’s model is to efficiently find

a boundary (object contour) by automatically partitioning an image into two

regions based on global minimizing active contour energy. The level set function

Φ splits the image domain Ω into an inner region ΩI = Φ > 0, an outer region

ΩO = Φ < 0 and on the contour Φ = 0. However, CV’s model makes strong

assumptions on the intensity distributions and homogeneity criterion, which are

usually expressed over regions inside and outside of the contour. Instead of deal-

ing with the entire domains Ω defined by the evolving curve, we only consider

the narrow band Bin
⋃
Bout

⋃
C which is formed by the inner band domain Bin,

outer band domain Bout from two sides of the curve C and the curve C itself

(note: C is presented by Φ = 0), as depicted in Fig.4.1. Our NB-AC loss of the

second branch is defined in Eq.4.6:

L2 =µ

∫
ω

|Length(Φ)|dxdy

L3 =λ1

∫
Bin

|p− bin|2dxdy + λ2

∫
Bout

|p− bout|2dxdy
(4.6)

where the first term defines smoothness which is equivalent to the length of the

contour, the second term defines the inner band energy, the last term defines

outer band energy. p is the predicted feature map. By applying the transitional

gate (Sec.4.2.3), we can rewrite Eq.4.6 in term of domain Ω as follows:

L2 =µ

∫
Ω

|FC
L (x, y)|dxdy

L3 =λ1

∫
Ω

|p(x, y)FN
L (x, y)− bin|2dxdy + λ2

∫
Ω

|p(x, y)FN
L (x, y)− bout|2dxdy

(4.7)
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where bin and bout are intensity descriptors of Bin and Bout, respectively.

bin =

∫
Ω
p(x, y)F yζχ(x, y)dxdy∫

Ω
F yζχ(x, y)dxdy

and

bout =

∫
Ω
p(x, y)(1− F yζχ(x, y))dxdy∫

Ω
(1− F yζχ(x, y))dxdy

(4.8)

where F yζχ is the narrow band of the groundtruth y and is computed by first

applying the gradient operator (χ) to extract the gradient and then applying a

dilation operator ζ to get the narrow band, namely, F yζχ = ζ(χ(y)).

Our proposed NB-AC loss archives good flexibility thanks to the narrow band

principle which does not carry a strict homogeneity condition. The theory of our

proposed NB-AC attention model comes from the parallel curve also known as

"offset curves" [126]. As given in Fig.4.1, the curve CB1 or CB2 (CB in general) is

called a parallel curve of C if its position vector IB satisfies:

C : Ω→ R2

z → I(z) = [x(z), y(z)]

IB(z) = I(z) + Bn(z)

(4.9)

where x and y are continuously differentiable with respect to parameter z and

Ω ∈ [0, 1]. B is the amount of translation, and n in the inward unit normal of C.

An important property resulting from the definition of Eq.4.9 is that the velocity

vector of parallel curves depends on the curvature of C. That means, the velocity

vector of curve CB is expressed as a function of the velocity vector of C and its

curvature and normal. Set n(z) = −κI(z), we have:

IB(z) = I(z) + Bn(z) = (1− κB)I(z) (4.10)

Apply Eq.4.10 to the curves in Fig.4.1, we obtain the length element (or velocity)
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of outer parallel curve C+B: l+B = ||I+Bn(z)||, the length element of inner parallel

curve C−B: l−B = ||I−Bn(z)||. Based on the above offset curve theory, the inner

band Bin and outer band Bout (in Fig.4.1) are bounded by parallel curves C−B

and C+B.

In our proposed network architecture, the second branch focuses on only the

information around the contour and on the contour itself, i.e. Bin
⋃
Bout

⋃
C as in

Fig.4.1. This aims at addressing not only the problem of weak boundary object

segmentation but also the imbalanced data problem. In image segmentation,

each pixel is considered as a data sample and needs to be classified. The second

branch can be seen as an under-sampling approach where all data samples inside

the C−B and outside of +B (i.e. not in the narrow band) are ignored and only

data samples between the narrow band formed by Bin
⋃
Bout

⋃
C are kept for

predicting. One can think contour C plays the role of hyperplane and all data

samples inside narrow band play the role of support vectors which influence the

position and orientation of the hyperplane.

4.2.5 Network Architecture

The architecture of our proposed two-branch network is illustrated in Fig.4.2

where we choose Unet framework for this demonstration. The first branch is de-

signed as a standard encoder-decoder segmentation network. The second branch

is composed of residual blocks interleaved with transitional gates (in subsec.4.2.3)

which ensures that the second branch only processes boundary-relevant infor-

mation (edge and narrow band). Our proposed network is designed as an end-

to-end framework. The losses from both branches are combined as:

LNB−AC = γ1L1 + γ2L2 + γ3L3 (4.11)
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where γ1 and γ2, and γ3 are three hyper-parameters that control the weight-

ing between the losses and chosen as γ1 = 0.6, γ2 = 0.2 and γ3 = 0.2 in our

experiments.

In this work, we use 2D Unet [7] and 2D FCN [55] architectures as our base

segmentation frameworks to evaluate our proposed NB-AC loss function perfor-

mance in the case of 2D input. Furthermore, we use 3D Unet [8] to evaluate the

propoed NB-AC loss function in the case of 3D input. In Unet, feature maps

from down-sampling path is forwarded to the up-sampling path by skip connec-

tions. Each layer in the down-sampling path consists of two 3 × 3 convolution

layers (3× 3× 3 in 3D Unet), one batch normalization (BN), one rectified linear

unit (ReLU) and one max pooling layer. In the up-sampling path, bilinear inter-

polation is used to up-sample the feature maps. In FCN framework, we choose

FCN-32 which produces the segmentation map from conv1, conv3, conv7 by us-

ing a bilinear interpolation. At the down-sampling path, each layer in FCN is

designed as same as layer in 2D Unet.

4.3 Active Contour Unet with Guided Segmentation

To improve the segmentation result in less annotation data, we also experiment

transferring the knowledge obtained by the Cycle GAN guided segmentation

model proposed in [6] to a Unet model trained with our proposed loss. Firstly,

we trained two independent Unet models separately and respectively on two

datasets (6m infant brain and 24m brain images). Then we freeze these two

models and train the Cycle GAN segmentation model detailed below in section

4.3.1. Later, we use our trained Unet model with our proposed Narrow Band -

Active Contour loss on 3D 6m-infant-brain dataset to learn the knowledge the

Cycle GAN segmentation model transferred from 24m-brain to 6m. The result of

this method (the Active Contour guided by GAN) is presented in section 5.3.2.
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4.3.1 Cycle GAN segmentation

This model, proposed by Toan Duc Bui et al. [6], aims to transfer the 3D 24-

month brain images to 6-month brain images which share the same tissues-

segmentation result. The figure 4.3 below shows the overview of this method.

Figure 4.3: Cycle GAN guided segmentation [6]

The first step is to train U-net segmentation for infant and adult brain data

independently, respectively called SX and SY for distinguishment. The idea

of using (previously-and-independently trained) U-net here is to ensure that

the segmentation image of the synthetic images transferred by CycleGAN is

estimatedly the same as its origin’s, comparing via cross-entropy (CE) loss. As

shown in figure 4.3, the real 6-month image will get through the 3D Cycle GAN

Segmentation model to generate a synthetic 24-month image and vice versa.

For specific, scrutinizing figure 4.3, the orange line (or similarly, the purple one):

real 6-month images will be used to generate synthetic 24-month images. The

24-month discriminator of the the Cycle GAN will judge whether the fabricated

images is real or not. Simultaneously, each pair of the original-and-unnatural

will get through the Unet models to produce the segmentation results and these

two will be compared with segmentation loss ( SX and SY respectively output

maskX and maskY and CE loss will be calculated from these two). In figure

4.3, the orange line, together with the purple line, yields the basic flows of the
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3D-CycleGAN-Seg.

Objective function. As mentioned above, the proposed model is generally

based on multiple different constraint such as cycle-consistency for segmented

features, discriminator loss for generated images, and feature matching loss for

image quality enhancement. Considering all the loss functions above to update

weights while training the Cycle GAN Segmentation network gives us a final

objective function.

Cycle GAN loss. To transfer the appearance between two times-points of un-

paired set X, Y which X is 6-month phase and Y is 24-month phase. The authors

use the Cycle GAN network to guide the segmentation. The architecture of Cy-

cle GAN contains two generators and G = {GX , GY } and two discriminators

D = {DX , DY }. The generator generates new image GY from GX in particu-

lar it transfers the image appearance from 6-month time-point to the 24-month

time-point Y. The discriminator D has the same function with GAN which is

providing the feedback for generator to generate more real images.

LcycleGAN (GX , GY , DX , DY ) = LGAN (GY , DX)

+ LGAN (GY , DY )

+ λLcycle(GX , GY )

+ βLidentity(GX , GY )

(4.12)

With LGAN is the GAN loss (for D networks), Lcycle is the cycle-consistency

loss so as to ensure that GX(GY (x)) ≈ x. And the Lidentity (from Cycle GAN)

[16] is to guide the generator in mapping synthesis images domain to the target

one faster, with λ & β as parameters.
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Lidentity(G,F ) = Ey∼pdata(y) [
∥∥∥G(y)− y

∥∥∥
1
] + Ex∼pdata(x) [

∥∥∥F (x)− x
∥∥∥

1
] (4.13)

Segmentation loss. At each time-point, there is a ground-truth label for every

sample. The authors propose a 3D Cycle GAN Segmentation network by adding

two segmentation networks SX , SY that use ground-truth label to train the

segmentation network SX , SY using 3D-Dense-Unet architecture. Pre-tranied

weight of the segmentation networks is used to produce the segmentation features

of real images to help the generator networks G to generate images that have

similar segmentation features to real images. In particular from one sample in

6-month time-point, the network generates another sample that similar to 24-

month time-point form and provides the synthetic segmentation result from

segmentation networks SY which trained on images from domain Y. The network

compares that result to the one from segmentation network SX , which trained

on images from domain X to produce cycle loss. The segmentation loss Lseg

encourages the synthetic images distribution to move towards distribution of

the search space with smallest cross-entropy loss.

Lseg(GX , GY , SX , SY ) =

C∑
i=1

T (SiX(x)) log(SiY (GX(x)))

+

C∑
i=1

T (SiY (y)) log(SiX(GY (y)))

(4.14)

Dense loss (Feature matching loss). For further improvement in the image qual-

ity, the authors propose contextual loss to measure cosine distance between two

segmentation features of real and fake images that extracted from segmentation
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networks SX and SY .

Lf (GX , GY , SX , SY ) =

m∑
l=n

(LCX(f lSX
(x), f lSX

(GX(x))

+ LCX(f lSY
(y), f lSY

(GY (y))

(4.15)

Objective function. Combining all the loss functions above, the objective function

for this model is defined as:

LcycleGAN_Seg(GX , GY , DX , DY , SX , SY ) = LcycleGAN (GX , GY , DX , DY )

+ γLseg(GX , GY , SX , SY )

+ ξLf (GX , GY , SX , SY )

(4.16)

Which is to add up the Cycle GAN loss, segmentation and feature mapping loss,

with γ & ξ as parameters.

Guided segmentation. After training the 3D Cycle GAN Segmentation net-

work, the pretrained model is then used to retrain the 3D dense Unet network

for segmentation of the infant brains. The objective function (joint segmentation

loss) for the 3D dense Unet network is updated to be the sum of the loss for the

segmentation of both the natural and unnatural (generated from the pretrained

3D Cycle GANSegmentaiton) images:

Lseg_join(SX) =

C∑
i=1

LiX log(SiX(x))

+

C∑
i=1

LiY log(SiX(GY (y))

(4.17)

Evaluation metrics. The proposed method originally uses Dice Similarity Co-

efficient (DSC) metric for evaluation. The DSC metric is similar to the idea of
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F score, defined as:

Dice score =
2 · |A ∩B|

2 · |A ∩B|+ |B\A|+ |A\B| (4.18)

To an extent, the authors’ work offers an approach using data from one time-

point to correct the segmentation errors of another without the need of paired

data. Which is to use the Unet added into cycle GAN for Cycle GAN Segmen-

tation network. And then leverage this model to correct the segmentation fault

by retraining and modifying the loss function of the 3D dense Unet network.
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CHAPTER 5

EXPERIMENT

For the experiment, we start discussing the collected datasets, then our moti-

vation experiment using active contour post-processing on previously trained

Unet model detailed in section 5.3.3. Later, we describe our proposed approach,

the Narrow Band - Active Contour loss experimented with different networks

as in section 5.3. For the result from the experiments, section 5.3.1 noted down

both the qualitative and quantitative comparison of this loss function used with

different networks as well as another experiment using this proposed loss in com-

bination with 3D Unet guided with GAN (from the Cycle GAN Segmentation

model).

5.1 Dataset

We use four common medical datasets including 2D and 3D images in our ex-

periments as follows:

iSeg: The iSeg19 dataset [129] consists of 10 subjects with ground-truth labels

for training and 13 subjects without ground-truth labels for testing. Each subject

includes T1 and T2 images with size of 144× 192× 256, and image resolution of

1× 1× 1 mm3. In iSeg, there are three classes: white matter (WM), gray matter

(GM), and cerebrospinal fluid (CSF).

MRBrainS: The MRBrainS13 dataset contains 6 subjects for training and val-

idation and 15 subjects for testing. The MRBrainS18 dataset [130] contains 7

subjects for training and validation and 23 subjects for testing. For each subject,

three modalities are available that includes T1-weighted, T1-weighted inversion

recovery and T2-FLAIR with image size of 48 × 240 × 240. Each subject was

manually segmented into either 3 or 8 classes by the challenge organizers.
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Brats: The Brats18 database [131] contains 210 HGG scans and 75 LGG scans.

For each scan, there are 4 available modalities, i.e., T1, T1C, T2, and Flair.

Each image is registered to a common space, sampled to an isotropic 1 × 1 × 1

mm3 resolution by the organizers and has a dimension of 240 × 240 × 155. In

Brats18, there are three tumor classes: whole tumor (WT), tumor core (TC)

and enhanced tumor (ET).
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Figure 5.1: Statistical information of medical images.
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Aforementioned in section 2.1.2, and in figure 5.2 and 5.1 respectively shows the

examples as well as the statistical information of these three datasets. Sharing

the same task of segmenting the target tissues for the given 3D subjects, Brats

and MRBrains, however, do not severely affected by the less annotation problem

as in iSeg. Hence, for this issue, we also leverage a subset of subjects from The

UNC/UMN Baby Connectome Project (BCP) to guide the segmentation 6 and

24 -moth datasets using cyclegan trained on BCP and iSeg 2019. The follows are

detailed description of iSeg and BCP dataset as we alloyed these two dataset with

different parameters, which also lead to a heavier problem of data pre-processing

and normalizing.

Baby Connectome Project (BCP) is an infant brain MRI segmentation dataset

which is used for studying abnormal early brain development, the dataset is

also utilized for Iseg-2019 Challenge in conjunction with MICCAI 2017 1. BCP

comprises of infant brain MRI scans with their segmentation labels in 3 types:

white matter (WM), gray matter(GM), and cerebrospinal fluid (CSF). The MRI

scans is recorded based on standard critical periods in terms of studying both

normal and abnormal in early brain development of radiologists or doctors. In

the early stage of brain development , there are three importanat phases in

the first-year brain MRI, consisting of infantile phase (<= 5 months), isointense

phase (6-8 months) and early adult-like phase(>=9 months). Especially, 6-month

old and 24-month old record of infant brain images are two critical periods of

the problem we study. 6-month old infant brain has respectively low intensity

contrast between tissues in comparison to 24-month old, which motivates the use

of GAN to guide infant brain segmentation with adult brain dataset. The dataset

contains input subject as T1- and T2-weighted MR images of 10 infant subjects

in the training set( from ssubject-1 to subject-10). The manual segmentation

label for each subject is set as :

1http://iseg2019.web.unc.edu/

75



0: Background (everything outside the brain)

10: Cerebrospinal fluid (CSF)

150: Gray matter (GM)

250: White matter (WM)

In the test set, BCP contains T1- and T2- weighted MR images of 13 infant

subjects( from subject-11 to subject-23). Table 5.2 shows the analytical reports

of the two dataset we obtained. On the other hand, table 5.1 are parameters

for each of the dataset. This table also infers the need of preprocessing and

normalizing data.

Table 5.1: Dataset imaging parameters2

TR/TE Flip angle Resolution

Iseg

training

T1-w 1900/4.38 ms 7º 1×1×1 mm3

T2-w 7380/119 ms 150º 1.25×1.25×1.95 mm3

BCP
T1-w 2400/2.24 ms 8º 0.8×0.8×0.8 mm3

T2-w 3200/564 ms VAR 0.8×0.8×0.8 mm3

Stanford

University

T1-w 7.6/2.9 ms 11º 0.94×0.94×0.80 mm3

T2-w 2502/91.4 ms 90º 1.00×1.00×0.80 mm3

Emory

University

T1-w 2400/2.19 ms 8º 1×1×1 mm3

T2-w 3200/561 ms 120º 1×1×1 mm3

2http://iseg2019.web.unc.edu/data/. sagittal: x plane, axial: z plane, coronal: y plane, VAR:
for variance
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Table 5.2: Dataset description

iseg 2019 #subjects
avg.

start slices
avg.

end slices
avg.

slices/subject total

train 10 92.40 192.40 101.00 1010

test 13 87.77 188.46 101.69 1322

23 89.78 19.17 101.39 2332

(a) iseg 2019

mini-BCP #subjects
avg.

start slices
avg.

end slices
avg.

slices/subject total

6m
train 4 32.50 180.75 150.25 601

test 2 30.50 183.50 154.00 308

24m
train 4 23.0 187.25 165.25 661

test 20 21.50 186.00 165.50 3310

30 23.77 185.30 162.67 4880

(b) a sub-dataset of BCP

Figure 5.3 shows an example of one slices from iSeg 2019 dataset. As noted in the

figure, respectively from the left to the right column are T1-w, T2-w and label

of this slide. More information about MRI subjects is noted in section 2.1.2.

2From iSeg 2019 [129]
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Figure 5.3: Dataset example from iSeg 2019 [129]. The columns are T1-weighted,

T2-weighted, and label of the target tissues (from left to right). The rows are

the middle slide of a subject viewed in axial/z, sagittal/x, coronal/y plane. For

the label of the target tissues: the light gray part is white matter, gray part is

for grey matter and the dark grey part is for cerebrospinal fluid (the black part

is background).
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Figure 5.4: An example of the segmentation result predicted by our model

5.2 Motivation

In this part, we leverage the Cycle GAN Segmentation model to train the 6

and 24 -moth segmentation models (as later detailed in section 5.3.3). Later,

we experiment several post-processing using active contour methods to check

whether this active contour methods can be used for better medical images

segmentation boundaries, as well as whether we should move on to the next

part: wrap this active contour method into an end-to-end unet model.

To evaluate appearance transferring efficiency of the 24-month old synthetic

images to 6-month old synthetic images vice versa, we compare against state of

the art model U-net network for segmentation which were trained with the real-

6-month subjects. The result shows that our method has a better performance

on Dice Score Coefficient metric. In particular, our method achieves 92.506% on
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average with accuracy 94.76% on gray matter, 91.46% on white matter, 91.3% on

CSF, while state of the art model of 3D U-Net got 92.50% accuracy on average

which was tested on subject-9. Figure 5.4 shows an example of the segmentation

result predicted by our model.

Applying Chanvese method with narrow band for [-0.5, 0.5] signed distance map

from the inital boundary (retrieved from the previous training inference on Cycle

GAN Segmentation model) with an additional restriction that boundaries of a

segmented tissue should not move more than 0.5×5 signed distance map (in the

initial boundaries) into other tissues with different label.

Figure 5.5 shows the energy of an example subject (each label) before and af-

ter applying the active contour post-processing method. The dark regions and

the brighter regions respectively are the energy of the whole regions inside and

outside the segmented regions. Here, we only show the energy of the whole in-

side/outside regions instead of narrow band because our chosen narrow band

regions are only several pixels wide . The active contour methods strive to move

the initial contour to the lower or higher (depending on the sign of the weight of

line in equation 2.3 intensity fields of the image where the intensity gradient is

larger. The higher contrast between the two inside and outside regions as shown

in this figure fails for the higher DSC result (after post-processing) implies that

active contour methods might works on this dataset.

Please note that the contrast here might not change much because the initial

boundary was extracted from the Cycle Gan Segmentation model, which have

already achieve a high result so that the boundary of the object should not

change much, except for the regions those are mis-segmented via the above

model.
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5.3 The proposed approach (NB-AC loss)

In this section, we evaluate the proposed NB-AC loss with different network ar-

chitectures, such as, Unet [7], 3DUnet [8]. Our performance is compared against

other common loss functions i.e. Dice, CE, Focal on the baseline frameworks

Unet [7] and compared against other state-of-the-art networks on 3DUnet [8].

Figure 5.6 shows an example of the intermediate outputs of our NB-AC method.

Experiment setting. On 2D images, to train our NB-AC loss on 2D Unet

networks we define the input as N × C × H × W , where N is the batch size,

C is the number of input modalities and H,W are height, width of 2D image.

Corresponding to iSeg19, MRBrainS18 and Brats18, we choose the input as

4×2×224×224, 4×3×224×224 and 4×4×224×224, respectively. We employed

the Adam optimizer, with a learning rate of 1e-2 with weight decay 1e-4. On 3D

volumes, our 3D architecture is built upon 3D-Unet [8] and the input is defined

as N×C×H×W ×D, where N is batch size, C is the number of input modalities

and H,W,D are height, width and depth of volume patch on sagittal, coronal,

and axial planes. Corresponding to Brats18, MRBrainS13 and iSeg19, we choose

the input as 1× 4× 96× 96× 96, 1× 3× 96× 96× 48, and 2× 2× 96× 96× 96. We

implemented our network using PyTorch 1.3.0 and our model is trained until

convergence by using the ADAM optimizer. We employed the Adam optimizer,

with a learning rate of 2e-4. Our 3D Unet makes use of instance normalization

[132] and Leaky reLU. The experiments are conducted using an Intel CPU, and

RTX GPU.
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5.3.1 Results and Comparison

In the post-processing section, we only test on the iSeg 3D images (and for deep

snake we test on 2D slices iSeg). But for the Narrow Band - Active Contour loss,

we also check on the other two datasets (both 2D and 3D, for 2D models trained

on both FCN and Unet) as a further confirmation for the effectiveness of this

proposed loss.

For quantitative assessment of the segmentation, the proposed model is evalu-

ated on different metrics, e.g. Dice score (DSC), Intersection over Union (IoU),

Sensitivity (or Recall), Precision (Pre).

The performance of our proposed NB-AC loss is evaluated on both FCN [55]

and Unet [7] architectures for 2D input and 3DUnet [8] for 3D input. The com-

parisons between our proposed loss and other common loss functions: CE, Dice,

Focal on challenging datasets MRBrainS18, Brats18 and iSeg19 are given in

Tables 5.3. Most yellow-highlighted texts fall for Unet, which implies Unet is

generally better than FCN for these three datasets. This is why later in table

5.4 we only compare the 2D or 3D state-of-the-art methods against our proposed

losses on 2D or 3D Unet backbones.
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Table 5.3: Comparison between our proposed NB-AC loss against other losses

CE, Dice and Focal on MRBrainS18, BRATS 2018, iSeg 2019 dataset

Losses DSC IoU Pre Rec
M
R
B
ra
in
S
18

FCN

CE 83.26 74.69 85.0 86.4

Dice 82.0 73.23 82.67 85.89

Focal 78.79 70.0 77.78 86.56

NB-AC 84.62 76.48 86.44 86.78

Unet

CE 83.32 74.73 84.67 86.56

Dice 81.13 71.87 81.78 85.89

Focal 79.98 70.87 80.22 86.44

NB-AC 84.97 76.92 87.89 86.11

B
R
A
T
S
20

18

FCN

CE 78.57 73.74 77.33 80.00

Dice 77.67 72.94 75.00 81.00

Focal 72.33 68.08 69.00 78.00

NB-AC 79.96 75.16 79.66 80.33

Unet

CE 79.40 74.59 78.33 81.00

Dice 78.21 73.44 77.33 78.67

Focal 76.38 78.93 68.00 87.00

NB-AC 80.38 75.48 81.25 82.19

iS
eg

20
19

FCN

CE Loss 87.95 83.91 90.25 91.75

Dice 86.44 82.14 89.5 90.25

Focal 83.19 78.51 87.25 88.0

NB-AC 88.95 85.11 91.5 92.25

Unet

CE 88.91 85.06 91.25 92.25

Dice 87.19 83.01 90.03 90.5

Focal 87.07 82.90 89.75 91.0

NB-AC 89.73 86.05 92.25 92.0
*blue colored texts denote our results, bold texts denote the highest results for each datasets
on each metrices and backbones, yellow-highlighted texts denote the highest results for each

datasets on each metrices.
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It is clear that the proposed NB-AC loss function outperforms the other common

losses under both UNet and FCN frameworks. Take DSC metric on CE loss

as an instance, our loss gains 1.36%, 1.39%, 1.0% on MRBrainS18, Brats18,

iSeg19 respectively using Unet framework and it gains 1.65%, 0.98%, 0.82% on

MRBrainS18, Brats18, iSeg19 respectively using FCN framework.

Fig. 5.7, 5.8 and 5.9 visualize the comparison between our proposed NB-AC loss

against other loss functions including Dice, Focal (FC) and Cross Entropy (CE)

on Unet framework. These images are randomly select from the testing set of

various dataset, namely MRBrainS 2018, BRATS 2018, iSeg 2019. As shown in

Fig.5.2, medical images contain poor contrast images where boundary between

objects is very unclear and weak. Take iSeg dataset as an instance, due to the

myelination and maturation process of the infant brain, the boundary between

classes in the infant brain in iSeg is very weak, leading to difficult for seg-

mentation. The segmentation results from different loss functions are visualized

in Fig.5.9 (top) with specific differences are highlighted in colored boxes. The

infant brain MR images (iseg-2019 dataset) has extremely low tissue contrast

between tissues, thus the segmentation results using traditional loss functions

(such as CE, Dice, and Focal loss) have a large amounts of topological errors

(contain large and complex handles or holes) in the segmentation results, such

as WM surface in the Fig.5.9 (bottom) which illustrates a enlarged view of the

white matter surface of an infant brain. Fig.5.9 (bottom) demonstrates that the

proposed NB-AC loss function produces less topological errors (i.e., holes and

handles), indicated by the red arrows, compared against the existing loss func-

tions. In addition to 2D view of brain as in Fig.5.9, 3D view of the entire view

white matter surface as in Fig.5.10 demonstrates that the proposed NB-AC loss

function produces less topological errors (i.e., holes and handles), indicated by

the red arrows, compared against the existing loss functions.

In Fig. 5.9, the weak boundary around gray matter, white matter, CSF is high-
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light in colored boxes. In such colored boxes, we can see the boundary is shown

in poor contrast in the original image. Far apart from other loss functions which

are unable to capture such information, the proposed NB-AC has high capability

to work on the case of weak object boundary segmentation. Not only weak object

boundary but also imbalanced-class data, figure 5.7, 5.8 contain the performance

of middle slide of each image/volume that are from MRBrainS 2018, BRATS

2018 datasets. At each figure, the colored boxes highlight areas corresponding

to small class data and weak boundary object (specially the object boundary).

Compared against other loss functions, our NB-AC loss obtains closest result to

the groundtruth under both cases of weak boundary object, small object.

Clearly, comparing with the common segmentation losses, the proposed NB-AC

loss improve the segmenting performance using the same network backbone.

Take CE loss function as an example, the proposed NB-AC loss improved from

87.95% to 88.95% segmentation accuracy using FCN architecture and 88.91%

to 89.73% using U-Net architecture. Fig. 5.7, 5.8, 5.9 visualizes the comparison

between our loss and other loss functions. In these figures, some regions are

highlighted to see the difference in segmentation results between loss functions.

The segmentation results from different loss functions are visualized in Fig.5.9

(a) with specific differences are highlighted in colored boxes. Fig. 5.9 (b) il-

lustrates a enlarged view of the white matter surface of an infant brain from

the regions highlighted in blue boxes of Fig. 5.9 (a). Fig.5.9 (b) demonstrates

that the proposed NB-AC loss function produces less topological errors (i.e.,

holes and handles), indicated by the red arrows, compared against the existing

loss functions. For more detailed visualization, we provide the entire view white

matter surface obtained from different loss functions in Fig.5.10.

Table 5.4 shows the comparison against other state-of-the-art methods on three

volumetric datasets. Our performance is quite compatible with [133] on MR-
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BrainS13 while it outperforms [134] and [4] on BratS18 and iSeg19 with similar

network architecture setting up. The result noted in this table for iSeg also lever-

ages the information gained from 24 month dataset (section 5.3.2, without the

information from GAN, this Active Contour 3D Unet has already achieved a

DSC score of 92.56 on 6000 epoches (to our furthest knowledge, the current

SOTA on 3D Unet [4] only scores 92.55 on DSC).

5.3.2 The Active Contour Unet with Guided Segmentation

Transferring the knowledge from 24 month dataset to 6 month dataset in iSeg

dataset, we detailed the training state of cycle gan segmentation in section 5.3.3.

Using the knowledge learnt by the Cycle GAN Segmentation model from the 24

month brain dataset in BCP, we conduct an experiment striving to transfer this

knowledge on to the Active Contour Unet and received a result of 93.07 on the

3D iSeg 2019. Which is an increment of 0.51 from 92.56, supposedly supports

the proposed Narrow Band Active Contour loss.

Table 5.4: Comparison of our proposed loss on 2DUnet and 3DUnet against

other 2D and 3D state-of-the-art methods on medical datasets

Datasets DSC Recall

2D
segmentation

Brats18 [[135]/ Ours ] 77.75 / 80.38 80.1 / 82.19

MRBrainS18 [[136]/ Ours ] 82.48 / 84.97 – / 86.11

iSeg19 [[137]/ Ours ] 89.00 / 89.73 – / 92.00

3D
segmentation

Brats18 [[134] Ours ] 84.87/ 85.67 – / 86.47

MRBrainS13 [[133]/ Ours ]87.17/87.02 – / 87.89

iSeg19 [[4] Ours ] 92.55 / 93.07 92.64 / 93.16

*blue colored texts denote our results and bold texts denote the highest results
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5.3.3 Training inference

We use Baby Connectome Project dataset to experiment our method. Our model

was trained and tested on two periods that are 6-month old and 24-month old.

We use 4 subjects with labels in each time-points to train the segmentation net-

work Sx and Sy. The original resolution of these images used in our experiments

is 0.8× 0.8× 0.8mm.

However, to test our result on Iseg 2019 competition we have to resize down to

1.0× 1.0× 1.0mm to get the same image resolution to Iseg test set’s resolution.

Then we use outer interpolation to downsize the resolution of these images we

used to test in Iseg-2019 challenge. We linearly interpolate the image in a cubic

of 1.0× 1.0× 1.0mm.

The pixel value of images was changed after interpolation that make it hard to

evaluate our result in the new resolution so we have to render again that value

in the boundary region, particularly where the combination two out of three

regions white matter, gray matter and cerebrospinal fluid.

The render algorithm we use to take an accurate value for each pixel is k-means

clustering, with k = 3. We normalized the input image to [−1, 1] to easily com-

pute. However the memory resource we have is limited so we have to randomly

cropped a small region with a size of 32× 64× 64 ( where 32 is number of slice),

to test these cubic using our network we apply evaluation metric Dice Similarity

Coefficient (DSC) to calculate the percentages of intersection between predicted

cubic and label cubic. We use the adam optimizer with a batch size of 8 to train

the network, we initialize the learning rate at 0.0002.

The 6-month old U-net segmentation network Sx was train on 16000 epoches

and the same number of iterations was applied to train 24-month old U-net

segmentation network Sy. The method used U-net with instance normalization as
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the generator and a patch-based fully convolutional network as the discriminator.

Before we train the Cycle-gan model to convert the input image from 6-month

old to 24-month and vice versa in total 6000 epoches.

The balance weights were set as λ = 10, β = 5, γ = 3 and ζ = 2, we freeze the

wegihts of the segmentation networks so that it can adjust our segmentation

result guided from cycle-gan model.
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Figure 5.7: Qualitative result on MRBrainS 2018: Comparison between our re-

sults against other loss functions on Unet framework where the image is from

MRBrainS 2018.
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Figure 5.8: Qualitative result on BRATS 2018. Comparison between our results

against other loss functions on Unet framework where the image is from BRATS

2018.
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Figure 5.9: Qualitative result on iSeg 2019. (top) Comparison of our proposed

NB-AC loss against other loss functions on iSeg19 datasset with colored boxes

highlighting specific differences. (bottom) A loser look is also given with the

topological errors indicated by red arrows.
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Figure 5.10: Visualization of white matter surface of the existing loss functions

on iSeg19 dataset where differences in topology are indicated by red arrows.
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CHAPTER 6

CONCLUSION

The two main tasks in medical images segmentation are: (1) segment MRI into

different areas (e.g. WM, GM, CSF) to get a better understand on brain struc-

ture, therefore it is important to keep the topological structure; (2) detect and

segment lesion (brain tumor) into different classess with high accuracy. To sum

up this work, we attempt to tackle the common problems in medical imaging

(directly related to the two main tasks) which are less annotation, imbalance

data, and low contrast (or weak boundary). For the less annotation problem, we

leverage the Cycle GAN Segmentation model proposed by Toan Duc Bui et al.

[6] - using Cycle GAN as an data augmentation method. To address the weak

boundary (or low contrast) problem, we propose adding an attention gate on the

edge - calculating the dice score on the thick boundary of the segmented mask

outputted from Unet. To deal with the imbalance data problem, we focus more

on the narrow band around the contour under level set energy minimization,

which aims to lessen the effect of large objects on the original segmentation loss

where all pixels are treated equally (either inside small or large objects).

Wrapping everything up, we proposed a Narrow Band - Active Contour loss

which is the summation of the segmentation loss (CE loss), the attention bound-

ary loss (DICE score on thick boundary), and the narrow band active contour

energy on considered mask. To testify the efficiency of the proposed loss func-

tion, we provide small tests using the proposed loss on both 2D/3D Unet and

Fully Connected Network (FCN) comparing with other losses. And we receive a

result of 92.56, 87.02, 85.67 DSC scores relatively on iSeg19, MRBrainS13 and

Brats18 using 3D Unet trained with the proposed loss (Active Contour Unet in

section 5.3). Adding the aforementioned Cycle GAN Segmentation model with

the 3D Unet using this loss function (Active Contour Unet with Guided Seg-
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mentation in section 4.3, 5.3.2), we achieve a promising DSC score of 93.07. The

dataset we used in this works are MRBrainS 2013, iSeg 2019, Brats 2018, and

also a subset of data from BCP used in transfer learning for Unet; The major

task in these dataset is segmentation the target tissues.

Future work. There exist various segmentation Unet-like models paying more

attention to the object boundary or aiming for better medical image feature

representation, as well as multiple methods tackling the CNN oversampling/un-

dersampling problem. In the near future, we shall experiment some of these

approaches to build a better segmentation model, also better in terms of time

inference and accuracy performance.
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